

КОНТРОЛЬНЫЕ РАБОТЫ

1. Общие методические указания

Студент выполняет вариант, совпадающий с двумя последними цифрами его учебного шифра. Например, согласно шифру 5311/12, студент выполняет вариант № 12. Если последние цифры шифра превосходят число 20, следует вычесть число, кратное 20. Например, 5311/26, соответствует вариант № 6, полученный при вычитании 26 - 20 = 6 или шифру 5311/53 соответствует № $13 = 53 - 2 \times 20$.

При выполнении контрольных работ необходимо соблюдать следующие правила:

- 1. Каждую контрольную работу следует выполнять в отдельной (ученической) тетради, на внешней обложке указать фамилию, имя, отчество, полный шифр, номер контрольной работы.
- 2. Работа выполняется чернилами (не красными) с полями для замечаний рецензента.
- 3. Решения задач должны быть подробными, без сокращения слов. Перед решением каждой задачи должно присутствовать ее условие.

Задачи располагать в порядке номеров, указанных в задании, не меняя этих номеров.

2 Методические указания к выполнению контрольной работы № 1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Матрицей размера $(m \times n)$ называется прямоугольная таблица, в которой в специальном порядке записаны $m \cdot n$ элементов a_{ii} :

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{или} \quad A = \left(a_{ij}\right)_{m \times x}.$$

Первый индекс i является номером строки, а второй индекс j – номером столбца, на пересечении которых в матрице стоит элемент a_{ij} .

Если число строк в матрице равно числу столбцов, то матрица называется *квадратной*, а число строк — ее порядком. Остальные матрицы называют *прямоугольными*.

Две матрицы $A=\left(a_{ij}\right)$ и $B=\left(b_{ij}\right)$ считаются *равными* $\left(A=B\right)$ тогда и только тогда, когда равны их соответствующие элементы $a_{ij}=b_{ij}$, $(i=1,2,\cdots,m;\ j=1,2,\cdots,n).$

Диагональ квадратной матрицы, содержащая элементы $a_{11}, a_{22}, \cdots, a_{nn}$, называется *главной*, а диагональ, которая содержит элементы $a_{1n}, a_{2,n-1}, \cdots, a_{n1}$, называется – *побочной*.

Суммой A+B $(m\times n)-$ матриц $A=\left(a_{ij}\right)$ и $B=\left(b_{ij}\right)$ называется матрица $C=\left(c_{ij}\right)$ размера $(m\times n)$, каждый элемент которой равен сумме соответствующих элементов матриц A и B:

$$c_{ij} = a_{ij} + b_{ij}$$
, $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$.

Произведением αA матрицы $A = \left(a_{ij}\right)$ на число α (действительное или комплексное) называется матрица $B = \left(b_{ij}\right)$, которая получается из матрицы A умножением всех элементов на α :

$$b_{ij} = \alpha a_{ij}$$
, $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$.

Произведением AB $(m \times n)$ — матрицы $A = (a_{ij})$ на $(n \times k)$ — матрицу $B = (b_{ij})$ называется $(m \times k)$ — матрица $C = (c_{ij})$, элемент которой c_{ij} равен сумме произведений соответствующих элементов i — ой строки матрицы A и j — го столбца матрицы B:

$$c_{ij} = \sum_{\nu=1}^{n} a_{i\nu} b_{\nu j}$$
, $(i = 1, 2, \dots, m; j = 1, 2, \dots, k)$.

Заметим, что число столбцов матрицы A должно быть равно чис-

лу строк матрицы B.

По отношению к произведению двух матриц переместительный закон не выполняется, т.е.

$$A \cdot B \neq B \cdot A$$
.

Матрица, все элементы которой равны нулю, называется нулевой

$$O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Сумма нулевой матрицы ${\it O}$ и произвольной матрицы ${\it A}$ дает матрицу ${\it A}$:

$$A + O = A$$
.

Единичной матрицей называется матрица вида

$$E = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Пример. Вычислить 1) A + B; 2) 2A; 3) $A \cdot B$, где $A = \begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix}$;

$$B = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}.$$

Решение.

1.
$$A + B = \begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 3+3 & -2+4 \\ 5+2 & -2+5 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 7 & 3 \end{bmatrix}$$

2.
$$2A = 2\begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 3 & 2 \cdot (-2) \\ 2 \cdot 5 & 2 \cdot (-2) \end{bmatrix} = \begin{bmatrix} 6 & -4 \\ 10 & -4 \end{bmatrix}$$

3.
$$A \cdot B = \begin{bmatrix} 3 & -2 \\ 5 & -2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 \cdot 3 + (-2) \cdot 2 & 3 \cdot 4 + (-2) \cdot 5 \\ 5 \cdot 3 + (-2) \cdot 2 & 5 \cdot 4 + (-2) \cdot 5 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 11 & 10 \end{bmatrix}$$

Введем понятие определителя (или детерминанта) матрицы. *Определителем матрицы*

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

порядка n>1 называется число $\det A = \sum_{k=1}^n (-1)^{k+1} a_{1k} M_{1k}$, где

 M_{1k} — определитель порядка (n-1), полученный из матрицы A вычеркиванием первой строки и k — го столбца. Число M_{1k} называется дополнительным минором элемента a_{1k} .

Применим данное определение к матрицам 2-го и 3-го порядков.

Для матрицы
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 имеем
$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21},$$

где
$$M_{11}=a_{22}$$
, $M_{12}=a_{21}$. Аналогично для матрицы $A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

получим

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Заметим, что понятие определителя имеет смысл только для квадратных матриц.

В дальнейшем умение вычислять определители понадобится нам для решения систем линейных уравнений методом Крамера.

Рассмотрим систему m линейных уравнений с n неизвестными x_1, x_2, \cdots, x_n :

Матрица A, составленная из коэффициентов при неизвестных, называется матрицей системы

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \tag{2}$$

а матрица

$$A^* = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$
(3)

называется расширенной матрицей системы.

Если $b_1 = b_2 = \cdots = b_m = 0$, то система (1) называется однородной.

Числа c_1, c_2, \cdots, c_n называются решением системы линейных уравнений, если при подстановке вместо неизвестных в уравнения, об-

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ращают эти уравнения в тождества. Система называется совместной, если она имеет хотя бы одно решение. Если же система не имеет ни одного решения, то она называется несовместной.

Введем понятие ранга матрицы.

В матрице A размером $(m \times n)$ минор порядка r называется δa зисным, если он отличен от нуля, а все миноры порядка r+1 равны нулю или миноров порядка r+1 вообще нет.

Pангом матрицы называется порядок базисного минора (обозначение rang A).

Проще всего находить ранг матрицы и ее базисный минор при помощи элементарных преобразований, к которым относятся:

- 1. замена строк столбцами, а столбцов соответствующими строками;
 - 2. перестановка строк матрицы;
 - 3. вычеркивание строки, все элементы которой равны нулю;
 - 4. умножение какой-либо строки на число, отличное от нуля;
- 5. прибавление к элементам одной строки соответствующих элементов другой строки;

Важное значение имеет теорема: элементарные преобразования не меняют ранг матрицы.

Матрицы, полученные в результате элементарных преобразований, называются эквивалентными (пишут: $A \sim B$).

Если при помощи нескольких последовательно выполненных элементарных преобразований перейти от матрицы A к некоторой другой матрице A_1 , то $rang\ A = rang\ A_1$. Вычислив ранг A_1 мы тем самым будем знать и ранг A. Оказывается, что от любой матрицы A можно перейти к такой матрице A_1 , вычисление ранга которой не представляет затруднений; для этого следует добиться, чтобы в A_1 было достаточно много нулей

$$A_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}. \tag{4}$$

Матрицы, имеющие вид (4) называются треугольными.

Пример. Найти ранг матрицы
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$
.

Решение.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \\ 0 & -9 & -18 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

Разберем преобразования матрицы A:

- 1. ко второй строке прибавим первую, умноженную на (-4), к третьей строке прибавим первую, умноженную на (-7), к четвертой строке прибавим первую, умноженную на (-10);
- 2. разделим все элементы второй строки на (-3), третьей на (-7), четвертой строки на (-9);
- 3. к третьей и четвертой строкам прибавим вторую, умноженную на (-1);
- 4. вычеркнем третью и четвертую строки, состоящие только из нулей.

В результате данных преобразований остались две различные строки.

 $M_2 = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$. Его порядок равен двум, а определителей третьего порядка составить уже нельзя, следовательно, $rang\ A = 2$.

Вопрос о совместности системы (1) полностью решается следующей *теоремой:*

Для того, чтобы система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу ее расширенной матрицы.

Пусть для системы т линейных уравнений с п неизвестными выполнено условие совместности т.е.

$$rang A = rang A^* = r$$

тогда:

- 1. если r = n, то система имеет единственное решение;
- 2. если r < n, то система имеет бесконечно много решений, а именно, некоторым n r неизвестным можно придавать произвольные значения, тогда оставшиеся r неизвестных определятся уже единственным образом.

Рассмотрим далее некоторые методы решения систем ли-

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

нейных уравнений.

1. ПРАВИЛО КРАМЕРА.

Если в системе (1) m = n и $\det A \neq 0$, то система (1) имеет единственное решение и

$$x_i = \Delta_i / \det A, \tag{5}$$

где Δ_i — определитель, полученный из определителя матрицы A заменой i — го столбца на столбец свободных членов. Формулы (5) носят названия формул Крамера.

Пример. Решить систему линейных уравнений методом Крамера (задача 1.1–1.20)

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5, \\ 2x_1 - x_2 + x_3 = 6, \\ x_1 + 5x_2 = -3. \end{cases}$$

Решение.

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 6 \\ -3 \end{bmatrix}.$$

Вычислим определитель матрицы A

$$\Delta = \det A = \begin{vmatrix} 3 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & 0 \end{vmatrix} = (-1)^{1+1} 3 \begin{vmatrix} -1 & 1 \\ 5 & 0 \end{vmatrix} + (-1)^{1+2} 2 \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} + (-1)^{1+3} 1 \begin{vmatrix} 2 & -1 \\ 1 & 5 \end{vmatrix} = 3(0-5) - 2(0-1) + (10+1) = -15 + 2 + 11 = -2.$$

Так как $\Delta = -2 \neq 0$, то система совместна и имеет единственное решение. Вычислим Δ_1 , Δ_2 и Δ_3 :

$$\Delta_{1} = \begin{vmatrix} 5 & 2 & 1 \\ 6 & -1 & 1 \\ -3 & 5 & 0 \end{vmatrix} = (-1)^{1+1} 5 \begin{vmatrix} -1 & 1 \\ 5 & 0 \end{vmatrix} + (-1)^{1+2} 2 \begin{vmatrix} 6 & 1 \\ -3 & 0 \end{vmatrix} + (-1)^{1+3} 1 \begin{vmatrix} 6 & -1 \\ -3 & 5 \end{vmatrix} = 5(0-5) - 2(0+3) + (30-3) = -25 - 6 + 27 = -4,$$

$$\Delta_{2} = \begin{vmatrix} 3 & 5 & 1 \\ 2 & 6 & 1 \\ 1 & -3 & 0 \end{vmatrix} = (-1)^{1+1} 3 \begin{vmatrix} 6 & 1 \\ -3 & 0 \end{vmatrix} + (-1)^{1+2} 5 \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} + (-1)^{1+3} 1 \begin{vmatrix} 2 & 6 \\ 1 & -3 \end{vmatrix} =$$

$$= 3(0+3) - 5(0-1) + (-6-6) = 9 + 5 - 12 = 2,$$

$$\Delta_{3} = \begin{vmatrix} 3 & 2 & 5 \\ 2 & -1 & 6 \\ 1 & 5 & -3 \end{vmatrix} = (-1)^{1+1} 3 \begin{vmatrix} -1 & 6 \\ 5 & -3 \end{vmatrix} + (-1)^{1+2} 2 \begin{vmatrix} 2 & 6 \\ 1 & -3 \end{vmatrix} + (-1)^{1+3} 5 \begin{vmatrix} 2 & -1 \\ 1 & 5 \end{vmatrix} =$$

$$= 3(3-30) - 2(-6-6) + 5(10+1) = -81 + 24 + 55 = -2.$$

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{-4}{-2} = 2;$$
 $x_2 = \frac{\Delta_2}{\Delta} = \frac{2}{-2} = -1;$ $x_3 = \frac{\Delta_3}{\Delta} = \frac{-2}{-2} = 1.$

Таким образом, получили $x_1 = 2$; $x_2 = -1$; $x_3 = 1$.

Проверка:
$$\begin{cases} 3 \cdot 2 - 1 \cdot 2 + 1 = 5, \\ 2 \cdot 2 + 1 + 1 = 6, \\ 2 - 5 = -3. \end{cases}$$

Ответ: $x_1 = 2$; $x_2 = -1$; $x_3 = 1$.

2. МЕТОД ГАУССА.

Пусть задана система (1). Для того, чтобы решить систему (1) методом Гаусса, надо данную систему привести к треугольному виду, а затем обратным ходом последовательно вычислить неизвестные.

На практике рациональнее преобразовывать не саму систему, а ее расширенную матрицу. Расширенную матрицу системы приводим с помощью элементарных преобразований к виду, когда все элементы, стоящие ниже главной диагонали равны нулю.

Метод Гаусса является одним из универсальных методов нахождения решения системы линейных уравнений. Его универсальность заключается в том, что он позволяет установить не только совместность или несовместности системы, но и найти решение совместной системы.

Пример. Решить систему линейных уравнений методом Гаусса:

$$\begin{cases} x_1 - x_2 - 2x_3 = -1, \\ 2x_1 - x_2 - x_3 = 2, \\ -x_1 + 3x_2 + 2x_3 = 3. \end{cases}$$

Решение.

Выпишем расширенную матрицу A^* и приведем ее к треугольному виду (4):

$$A^* = \begin{bmatrix} 1 & -1 & -2 & | & -1 \\ 2 & -1 & -1 & | & 2 \\ -1 & 3 & 2 & | & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & | & -1 \\ 0 & 1 & 3 & | & 4 \\ 0 & 2 & 0 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & | & -1 \\ 0 & 1 & 3 & | & 4 \\ 0 & 1 & 0 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & | & -1 \\ 0 & 1 & 3 & | & 4 \\ 0 & 0 & -3 & | & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & | & -1 \\ 0 & 1 & 3 & | & 4 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}.$$

Разберем преобразование матрицы A^* :

- 1. ко второй строке прибавим первую, умноженную на (-2), к третьей строке прибавим первую;
 - 2. сократим третью строку на 2;
 - 3. к третьей строке прибавим вторую, умноженную на (-1);

4. сократим третью строку на (-3).

Мы видим, что $\operatorname{rang} A = \operatorname{rang} A^* = 3$, т.к. базисный минор $M_3 = \begin{vmatrix} 1 & -1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$. Число неизвестных n=3. Следовательно, сис-

тема совместна и имеет единственное решение. Найдем его методом Гаусса, для этого запишем систему, соответствующую преобразованной

матрице A^* (укороченная система): $\begin{cases} x_1 - x_2 - 2x_3 = -1, \\ x_2 + 3x_3 = 4, \\ x_3 = 1. \end{cases}$

Откуда получим: $x_3=1, \ x_2=1, \ x_1=2.$ Проверка: $\begin{cases} 2-1-2=-1,\\ 4-1-1=2,\\ -2+3+2=3. \end{cases}$

Ответ: $x_1 = 2$, $x_2 = 1$, $x_3 = 1$.

СХЕМА РЕШЕНИЯ ПРОИЗВОЛЬНОЙ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

- 1) проверяем условие rang $A = \operatorname{rang} A^* = r$ (если rang $A \neq \operatorname{rang} A^*$, то систем не имеет решения); выбираем базисный минор порядка r и записываем укороченную систему;
- 2) неизвестные x_1, x_2, \cdots, x_r назовем базисными, а x_{r+1}, \cdots, x_n свободными и выразим базисные неизвестные через свободные;
 - 3) записываем общее решение системы.

Пример. Найти общее решение однородной системы линейных уравнений и одно частное решение

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

Однородная система всегда совместна, т.к. ее расширенная матрица A^* получается добавлением к основной матрице A нулевого столбца и, следовательно, всегда $\operatorname{rang} A = \operatorname{rang} A^*$.

 $x_1 = x_2 = \dots = x_n = 0$ всегда является решением однородной системы (тривиальное решение).

Для существования нетривиального (ненулевого) решения однородной системы необходимо и достаточно, чтобы rang A=r < n .

Найдем ранг матрицы A.

$$A = \begin{bmatrix} 1 & 2 & 4 & -3 \\ 3 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \\ 3 & 8 & 24 & -19 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & -1 & -6 & 5 \\ 0 & -3 & -18 & 15 \\ 0 & 2 & 12 & -10 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & 1 & 6 & -5 \\ 0 & 1 & 6 & -5 \\ 0 & 1 & 6 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & 1 & 6 & -5 \\ 0 & 1 & 6 & -5 \end{bmatrix}$$

Разберем преобразования матрицы A:

- 1. ко второй строке прибавим первую, умноженную на (-3), к третьей строке прибавим первую, умноженную на (-4), к четвертой строке прибавим первую, умноженную на (-3);
- 2. разделим элементы второй строки на (-1), элементы третьей строки на (-3), а элементы четвертой строки на 2;
- 3. из третьей и четвертой строк вычтем вторую строку. Выберем в качестве базисного минора

$$M_2 = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 2 = 1 \neq 0.$$

Следовательно, rang A = 2 и система имеет ненулевые решения. Запишем укороченную систему

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0 \\ x_2 + 6x_3 - 5x_4 = 0 \end{cases}$$

В качестве базисных неизвестных выберем x_1 и x_2 (т.к. в базисный минор выбраны 1-й и 2-й столбцы), тогда x_3 и x_4 — свободные неизвестные. Полагая $x_3 = c_3$, $x_4 = c_4$, находим x_1 и x_2 .

$$\begin{cases} x_1 + 2x_2 = -4c_3 + 3c_4 \\ x_2 = -6c_3 + 5c_4 \end{cases}$$

Подставим x_2 в первое уравнение системы и найдем x_1 :

$$x_1 + 2(-6c_3 + 5c_4) = -4c_3 + 3c_4,$$

 $x_1 = 12c_3 - 10c_4 - 4c_3 + 3c_4 = 8c_3 - 7c_4.$

Запишем общее решение системы

$$X(c_3, c_4) = \begin{pmatrix} 8c_3 - 7c_4 \\ -6c_3 + 5c_4 \\ c_3 \\ c_4 \end{pmatrix}.$$

Из общего решения находим любое частное решение. Например, полагая $c_3=1,\ c_4=0$, получим $x_1=8,\ x_2=-6$. Таким образом, частное решение системы имеет вид: $x_1=8,\ x_2=-6,\ x_3=1,\ x_4=0$.

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

Понятие вектора. Линейные операции над векторами

 Γ еометрическим вектором называется направленный отрезок. Обозначается вектор двумя большими латинскими буквами с общей чертой \overline{AB} (A – начало вектора, B – конец вектора) или одной малой \overline{a} (см. рис.)



Векторы называются *равными*, если они имеют одинаковые длины, лежат на параллельных прямых или на одной прямой и направлены в одну сторону. Число, равное длине вектора, называется его *модулем*.

Если заданы декартовы координаты вектора $\overline{a}=\{x,y,z\}$, то модуль вектора \overline{a} , обозначаемый символом $|\overline{a}|$, вычисляется по формуле: $|\overline{a}|=\sqrt{x^2+y^2+z^2}$.

Если заданы две точки в декартовой системе координат $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$, где A – начало вектора, B – конец вектора, то координаты вектора \overline{a} вычисляются по формулам $\overline{a}=\overline{AB}=\left\{x_2-x_1,y_2-y_1,z_2-z_1\right\}$.

Операции алгебраического сложения векторов и умножение вектора на число называются *линейными операциями* над векторами.

- 1. Если $\overline{a}=\left\{x_{1},y_{1},z_{1}\right\},\ \overline{b}=\left\{x_{2},y_{2},z_{2}\right\},$ то координаты вектора $\overline{c}=\overline{a}+\overline{b}$ вычисляются по формулам $\overline{c}=\left\{x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2}\right\}.$
- 2. Если $\overline{a} = \{x_1, y_1, z_1\}$ и α действительное число, то координаты вектора $\overline{d} = \alpha \overline{a}$ вычисляются по формулам $\overline{d} = \{\alpha x_1, \alpha y_1, \alpha z_1\}$.

Пример. Даны два вектора $\overline{a}=\left\{1,1,1\right\}$ и $\overline{b}=\left\{1,0,-1\right\}$. Вычислить а) $\left|\overline{b}\right|$; б) $2\overline{a}+\overline{b}$.

Решение.

a)
$$|\overline{b}| = \sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{2}$$
;
6) $2\overline{a} + \overline{b} = 2\{1,1,1\} + \{1,0,-1\} = \{2,2,2\} + \{1,0,-1\} = \{2+1,2+0,2+(-1)\} = \{3,2,1\}.$

Скалярное произведение векторов, его свойства

Скалярным произведением двух векторов \overline{a} и \overline{b} называется число, равное произведению модулей этих векторов на косинус угла между ними. Скалярное произведение векторов \overline{a} и \overline{b} обозначается $(\overline{a},\overline{b})$ или $\overline{a}\cdot\overline{b}$.

Обозначим через ϕ угол между векторами \overline{a} и \overline{b} . Тогда скалярное произведение выражается формулой

$$(\overline{a},\overline{b}) = \cdot |\overline{a}| \cdot |\overline{b}| \cdot \cos\varphi$$
.

Если векторы \overline{a} и \overline{b} заданы декартовыми координатами $\overline{a}=\left\{x_1,y_1,z_1\right\},\ \overline{b}=\left\{x_2,y_2,z_2\right\},$ то скалярное произведение вычисляется по формуле

$$\left(\overline{a},\overline{b}\right) = x_1x_2 + y_1y_2 + z_1z_2.$$

Скалярное произведение векторов \overline{a} и \overline{b} равно нулю $((\overline{a}, \overline{b}) = 0)$ тогда и только тогда, когда векторы \overline{a} и \overline{b} перпендикулярны. В частности $(\overline{a}, \overline{b}) = 0$, если $\overline{a} = 0$ или $\overline{b} = 0$.

Алгебраические свойства скалярного произведения:

- 1. $(\overline{a}, \overline{b}) = (\overline{b}, \overline{a});$
- 2. $\lambda(\overline{a},\overline{b}) = (\overline{a},\lambda\overline{b}) = (\lambda\overline{a},\overline{b})$, где λ константа;
- 3. $(\overline{a}, \overline{b} + \overline{c}) = (\overline{a}, \overline{b}) + (\overline{a}, \overline{c})$.

С помощью скалярного произведения можно вычислить:

- 1. Модуль вектора \overline{a} : $|\overline{a}| = \sqrt{(\overline{a}, \overline{a})}$. Эта формула справедлива для любой системы координат. В частности, в декартовой системе координат данная формула примет вид $|\overline{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$, где $\overline{a} = \{x_1, y_1, z_1\}$.
 - 2. Косинус угла между векторами \bar{a} и \bar{b} .

$$\cos \varphi = \frac{\left(\overline{a}, \overline{b}\right)}{\left|\overline{a}\right| \cdot \left|\overline{b}\right|}.$$

1. Проекцию вектора \bar{a} на вектор \bar{b}

$$\Pi p_{\overline{b}} \, \overline{a} = \frac{\left(\overline{a}, \overline{b}\right)}{\left|\overline{b}\right|} \, .$$

Пример. Векторы \overline{a} и \overline{b} взаимно перпендикулярны и $|\overline{a}|=3$, $|\overline{b}|=5$. Найти $|\overline{a}+\overline{b}|$.

Решение.

$$\left| \overline{a} + \overline{b} \right| = \sqrt{\left(\overline{a} + \overline{b}, \overline{a} + \overline{b} \right)} = \sqrt{\left(\overline{a}, \overline{a} \right) + \left(\overline{a}, \overline{b} \right) + \left(\overline{b}, \overline{a} \right) + \left(\overline{b}, \overline{b} \right)} =$$

$$= \sqrt{\left| \overline{a} \right|^2 + 2\left| \overline{a} \right| \left| \overline{b} \right| \cos 90^0 + \left| \overline{b} \right|^2} = \sqrt{3^2 + 2 \cdot 3 \cdot 5 \cdot 0 + 5^2} = \sqrt{9 + 25} = \sqrt{34}$$

Пример. Вычислить косинус угла, образованного векторами $\overline{a} = \{2, -4, 4\}$ и $\overline{b} = \{-3, 2, 6\}$.

Решение.

Воспользуемся формулой $\cos \varphi = \frac{\left(\overline{a}, \overline{b}\right)}{\left|\overline{a}\right| \cdot \left|\overline{b}\right|}.$

$$(\overline{a}, \overline{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2 = 2 \cdot (-3) - 4 \cdot 2 + 4 \cdot 6 = 10;$$

$$|\overline{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2} = \sqrt{2^2 + (-4)^2 + 4^2} = \sqrt{36} = 6;$$

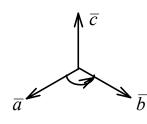
$$|\overline{b}| = \sqrt{x_2^2 + y_2^2 + z_2^2} = \sqrt{(-3)^2 + 2^2 + 6^2} = \sqrt{49} = 7;$$

$$\cos \varphi = \frac{10}{6 \cdot 7} = \frac{10}{42} = \frac{5}{21}.$$

Векторное произведение векторов

Векторным произведением вектора \overline{a} на вектор \overline{b} называется вектор \overline{c} , обозначаемый символом $\left[\overline{a}\,,\overline{b}\,\right]$ (или $\overline{a}\times\overline{b}$) и определяемый тремя правилами:

- 1. $|\overline{c}| = |\overline{a}| \cdot |\overline{b}| \cdot \sin \phi$, где ϕ угол между векторами \overline{a} и \overline{b} ;
- 2. вектор \overline{c} перпендикулярен к каждому из векторов \overline{a} и \overline{b} ;



3. вектор \overline{c} ориентирован так, что если смотреть с его конца на плоскость векторов \overline{a} и \overline{b} , то кратчайший поворот от \overline{a} к \overline{b} происходит против часовой стрелки (см. рис.)

Алгебраические свойства векторного произведения:

- 1. $\left[\overline{a}, \overline{b}\right] = -\left[\overline{b}, \overline{a}\right];$
- 2. $\lambda \lceil \overline{a}, \overline{b} \rceil = \lceil \lambda \overline{a}, \overline{b} \rceil = \lceil \overline{a}, \lambda \overline{b} \rceil$, где λ вещественное число;
- 3. $\left[\overline{a} + \overline{b}, \overline{c}\right] = \left[\overline{a}, \overline{c}\right] + \left[\overline{b}, \overline{c}\right]$.

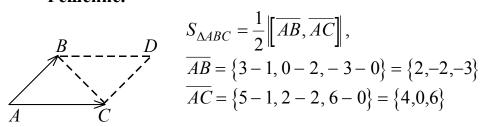
Геометрические свойства векторного произведения:

- 1. модуль векторного произведения $\left[\overline{a}, \overline{b} \right]$ равен площади параллелограмма, построенного на векторах \overline{a} и \overline{b} ;
- 2. если $\overline{a}\neq 0,\ \overline{b}\neq 0,$ то $\left[\overline{a},\overline{b}\right]=0$ тогда и только тогда, когда \overline{a} и \overline{b} параллельные векторы.
- 3. Если векторы \overline{a} и \overline{b} заданы декартовыми координатами $\overline{a}=\left\{x_1,y_1,z_1\right\},\ \overline{b}=\left\{x_2,y_2,z_2\right\},$ то векторное произведение \overline{a} на \overline{b} вычисляется по формуле

$$\begin{bmatrix} \overline{a}, \overline{b} \end{bmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \overline{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \overline{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \overline{k} .$$

Пример. Даны точки A(1,2,0), B(3,0,-3), C(5,2,6). Вычислить площадь треугольника Δ ABC.

Решение.



Вычислим $\left[\overline{AB}, \overline{AC}\right]$:

$$\left[\overline{AB}, \overline{AC} \right] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = \left\{ \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix}; - \begin{vmatrix} 2 & -3 \\ 4 & 6 \end{vmatrix}; \begin{vmatrix} 2 & -2 \\ 4 & 0 \end{vmatrix} \right\} = \left\{ -12, -24, 8 \right\}$$

$$\left[\overline{AB}, \overline{AC} \right] = \sqrt{(-12)^2 + (-24)^2 + 8^2} = \sqrt{144 + 576 + 64} = \sqrt{784} = 28.$$

Тогда
$$S_{\Delta ABC} = \frac{1}{2} \cdot 28 = 14$$
 (кв. ед.).

Смешанное произведение трех векторов

Смешанным произведением трех векторов \overline{a} , \overline{b} и \overline{c} называется число, равное скалярному произведению вектора $\left[\overline{a},\overline{b}\right]$ на вектор \overline{c} . Принято обозначение смешанного произведения трех векторов $\left(\overline{a},\overline{b},\overline{c}\right)$ (или $\overline{a}\overline{b}\overline{c}$).

Геометрические свойства смешанного произведения:

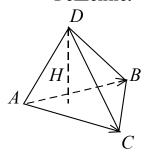
- 1. модуль смешанного произведения $|(\overline{a}, \overline{b}, \overline{c})|$ равен объему параллелепипеда, построенного на векторах \overline{a} , \overline{b} и \overline{c} ;
- 2. векторы \bar{a} , \bar{b} и \bar{c} лежат в одной плоскости тогда и только тогда, когда $(\bar{a},\bar{b},\bar{c})=0$.

Если векторы \overline{a} , \overline{b} и \overline{c} заданы декартовыми координатами: $\overline{a}=\left\{x_1,y_1,z_1\right\}$, $\overline{b}=\left\{x_2,y_2,z_2\right\}$, $\overline{c}=\left\{x_3,y_3,z_3\right\}$, то смешанное произведение вычисляется по формуле

$$(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Пример. Даны вершины тетраэдра A(2,3,1), B(4,1,-2), C(6,3,7), D(-5,-4,8). Найти длину высоты, опущенную из вершины D.

Решение.



$$V_{\text{TeTp}} = \frac{1}{3} S_{\Delta ABC} \cdot h = \frac{1}{3} \cdot \frac{1}{2} \left[\overline{AB}, \overline{AC} \right] \cdot h = \frac{1}{6} \left[\overline{AB}, \overline{AC} \right] \cdot h;$$

$$H$$
 B
 C
 V тетр $= \frac{1}{6} \left\| (\overline{AB}, \overline{AC}, \overline{AD}) \right\|$
 C
 T
 C
 T

Откуда получим
$$h = \frac{\left|\left(\overline{AB}, \overline{AC}, \overline{AD}\right)\right|}{\left|\left[\overline{AB}, \overline{AC}\right]\right|}.$$

Вычислим $\left[\overline{AB}, \overline{AC}\right] = 28$ (см. предыдущий пример).

$$\left(\overline{AB}, \overline{AC}, \overline{AD}\right) = \begin{vmatrix} 2 & -2 & -3 \\ 4 & 0 & 6 \\ -7 & -7 & 7 \end{vmatrix} = \left(-1\right)^{1+1} \cdot 2 \begin{vmatrix} 0 & 6 \\ -7 & 7 \end{vmatrix} + \left(-1\right)^{1+2} \cdot \left(-2\right) \begin{vmatrix} 4 & 6 \\ -7 & 7 \end{vmatrix} + \left(-1\right)^{1+3} \cdot 3 \begin{vmatrix} 4 & 0 \\ -7 & -7 \end{vmatrix} = 2(0+42) + 2(28+42) - 3(-28) = 308.$$

Тогда
$$h = \frac{308}{28} = 11.$$

Кривые второго порядка

В декартовой системе координат общее уравнение кривой второго порядка имеет вид

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0,$$
(6)

где не все коэффициенты A, B и C одновременно равны нулю. Если A = B = C = 0, то уравнение Dx + Ey + F = 0 определяет прямую линию.

В декартовой системе координат уравнение (6) примет один из следующих видов:

1. $(x-x_0)^2 + (y-y_0)^2 = R^2$ – каноническое уравнение окружности с центром в точке $C(x_0,y_0)$ и радиусом R;

2. $\frac{\left(x-x_0\right)^2}{a^2} + \frac{\left(y-y_0\right)^2}{b^2} = 1$ — каноническое уравнение эллипса с центром в точке $C(x_0,y_0)$ и полуосями a и b;

3. а) $\frac{\left(x-x_0\right)^2}{a^2}-\frac{\left(y-y_0\right)^2}{b^2}=1-$ каноническое уравнение гиперболы с центром в точке $C(x_0,y_0)$, действительной полуосью a и мнимой полуосью b;

б) $\frac{\left(x-x_0\right)^2}{a^2} - \frac{\left(y-y_0\right)^2}{b^2} = -1$ – каноническое уравнение гиперболы с центром в точке $C(x_0,y_0)$, действительной полуосью b и мнимой полуосью a;

4. а) $(y-y_0)^2 = 2p(x-x_0)$ – каноническое уравнение параболы с вершиной в точке $C(x_0,y_0)$ и осью симметрии, параллельной оси OX.

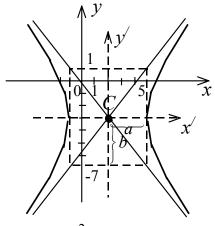
б) $(x - x_0)^2 = 2p(y - y_0)$ – каноническое уравнение параболы с вершиной в точке $C(x_0, y_0)$ и осью симметрии, параллельной оси OY.

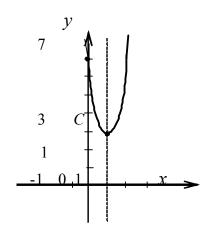
Используя каноническое уравнение кривой, легко построить график данной линии в декартовой системе координат.

Пример. Привести уравнение кривой второго порядка f(x,y) = 0 к каноническому виду. Определить вид кривой и построить ее график.

a)
$$16x^2 - 9y^2 - 64x - 54y - 161 = 0$$
,
 $16x^2 - 64x - 9y^2 - 54y - 161 = 0$,
 $16(x^2 - 4x) - 9(y^2 + 6y) - 161 = 0$,
 $16(x^2 - 2x \cdot 2 + 4) - 64 - 9(y^2 + 2y \cdot 3 + 9) + 81 - 161 = 0$,
 $16(x - 2)^2 - 9(y + 3)^2 = 144$.

Разделим обе части уравнения на 144: $\frac{(x-2)^2}{9} - \frac{(y+3)^2}{16} = 1$. Данное уравнение определяет гиперболу с центром в точке C(2,-3), действительной полуосью a=3 и мнимой полуосью b=4. Сделаем схематический чертеж.





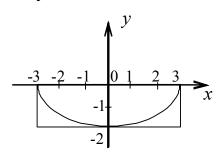
б)
$$y = 4x^2 - 8x + 7$$
, $y = 4(x^2 - 2x) + 7$, $y = 4(x^2 - 2x \cdot 1 + 1) - 4 + 7$, $y = 4(x - 1)^2 + 3$, $y - 3 = 4(x - 1)^2$, $(x - 1)^2 = \frac{1}{4}(y - 3)$ – парабола с вершиной в точке $C(1,3)$ и осью симметрии, параллельной оси OY .

B)
$$y = -\frac{2}{3}\sqrt{9-x^2}$$
.

Преобразуем это уравнение, возведя обе части в квадрат

$$y^2 = \frac{4}{9}(9-x^2), \quad \frac{y^2}{4} = \frac{9-x^2}{9}, \quad \frac{y^2}{4} = 1 - \frac{x^2}{9}, \quad \frac{x^2}{9} + \frac{y^2}{4} = 1.$$

Последнее уравнение определяет эллипс с центром в точке O(0,0) и полуосями a=3, b=2. Если решить данное уравнение относительно y, получим



$$y = \frac{2}{3}\sqrt{9-x^2}$$
, $y = -\frac{2}{3}\sqrt{9-x^2}$.

В условии задачи дано второе из этих уравнений. Оно определяет не весь эллипс, а только ту его часть, для точек которой $y \le 0$, т.е. половину эллипса, расположенную ниже оси OX.

ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ

Всякое уравнение первой степени относительно x и y, т.е. уравнение вида

$$Ax + By + C = 0, (7)$$

где A, B и C - постоянные коэффициенты, причем $A^2 + B^2 \neq 0$, определяет на плоскости некоторую прямую. Это уравнение называется общим уравнением прямой.

Если в общем уравнении прямой $B \neq 0$, то разрешив его относительно y, получим уравнение прямой с угловым коэффициентом

$$y = kx + b, (8)$$

где $k = -\frac{A}{B}$ — тангенс угла, образованного прямой с положительным

направлением оси OX; $b = -\frac{C}{B}$ — ордината точки пересечения прямой с осью OY.

Уравнение
$$y - y_0 = k(x - x_0)$$

(9)

является уравнением прямой, которая проходит через точку $M_0(x_0,y_0)$ и имеет угловой коэффициент k .

Если в общем уравнении прямой $C \neq 0$, то, разделив все члены на -C, получим уравнение прямой «в отрезках»

$$\frac{x}{a} + \frac{y}{b} = 1,\tag{10}$$

где $a = -\frac{C}{A}$, $b = -\frac{C}{B}$ - величины направленных отрезков, отсекаемых прямой на осях координат OX и OY, соответственно.

Уравнение

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1},\tag{11}$$

является уравнением прямой, проходящей через две точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$.

Обозначим $x_2-x_1=a_1,\ y_2-y_1=a_2$ координаты направляющего вектора прямой $\overline{a}=\left\{a_1,a_2\right\}$, тогда (10) примет вид

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2},\tag{12}$$

где $M_0(x_0,y_0)$ – точка на прямой. Уравнение (12) называется каноническим уравнением прямой. Введя параметр t, из (11) получим параметрические уравнения прямой

$$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \end{cases}$$
, где $0 \le t < \infty$ (13)

Уравнение прямой, проходящей через точку $M_0(x_0,y_0)$ перпендикулярно вектору $\overline{N}=\{A,B\}$, имеет вид

$$A(x - x_0) + B(y - y_0) = 0. (14)$$

Вектор \overline{N} - называется *нормальным вектором прямой*. Раскрывая в (14) скобки, получим общее уравнение прямой

$$Ax + By + (-Ax_0 - By_0) = 0.$$

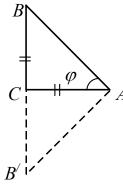
Таким образом, в общем уравнении прямой, коэффициенты при x и y суть координаты нормального вектора прямой.

Пусть две прямые заданы уравнениями с угловыми коэффициентами $y=k_1x+b_1$ и $y=k_2x+b_2$. Возможны следующие случаи их вза-имного расположения:

- 1) прямые параллельны (в частности совпадают) тогда и только тогда, когда выполняется условие $k_1=k_2\,;$
- 2) прямые пересекаются в некоторой точке, тогда угол между ними находится по формуле $\ensuremath{\operatorname{tg}}\alpha = \frac{k_2 k_1}{1 + k_1 \cdot k_2}$;
- 3) прямые перпендикулярны тогда и только тогда, когда $k_1 \cdot k_2 = -1$.

Пример. В равнобедренном прямоугольном треугольнике даны

декартовы координаты вершины острого угла A(2,1) и уравнение противолежащего катета BC: x-2y+1=0. Составить уравнения двух других сторон этого треугольника.



Решение. Найдем уравнение прилежащего катета. Так как $AC\perp BC$, CB: x-2y+1=0, то уравнение CA имеет вид $\frac{x-2}{1}=\frac{y-1}{-2}$ \Rightarrow 2x+y-5=0. $(k_1=-2)$ Угол между катетом и гипотенузой в равнобедренном треугольнике φ равен 45^0 . Для нахождения уравнения гипотенузы воспользуемся формулой $tg\varphi=\frac{k_2-k_1}{1+k_1\cdot k_2}$, из которой

найдем угловой коэффициент прямой AB.

1.
$$tg45^0 = \frac{k_2 + 2}{1 - 2 \cdot k_2} \Rightarrow 1 = \frac{k_2 + 2}{1 - 2k_2} \Rightarrow k_2 = -\frac{1}{3}$$
.

Тогда уравнение АВ имеет вид

$$y - y_A = k_2(x - x_A) \implies (y - 1) = -\frac{1}{3}(x - 2) \implies x + 3y - 5 = 0.$$

2.
$$tg45^0 = \frac{-2 - k_1}{1 - 2 \cdot k_1} \Rightarrow 1 = \frac{-2 - k_1}{1 - 2k_1} \Rightarrow k_1 = 3$$
.

Тогда уравнение AB^{\prime} : $(y-3) = 3(x-2) \implies 3x - y - 5 = 0$.

OTBET:
$$AC$$
: $2x + y - 5 = 0$, AB : $x + 3y - 5 = 0$, AB^{\prime} : $3x - y - 5 = 0$.

Прямая и плоскость в пространстве

Плоскость в декартовой системе координат может быть задана следующими уравнениями:

1. Общее уравнение плоскости

$$Ax + By + Cz + D = 0.$$

Кроме того,

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

уравнение плоскости, которая проходит через точку $M_0(x_0,y_0,z_0)$ перпендикулярно вектору $\overline{N}=\{A,B,C\}$.

2. Уравнение плоскости «в отрезках»

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$$

где a, b, c - величины направленных отрезков, отсекаемых плоскостью на координатных осях OX, OY и OZ, соответственно.

3. Уравнение плоскости, проходящей через три точки $M_1(x_1,y_1,z_1),\ M_2(x_2,y_2,z_2),\ M_3(x_3,y_3,z_3)$ $\begin{vmatrix} x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1 \end{vmatrix}=0.$

Прямая в пространстве задается:

1) общими уравнениями L в пространстве в \Re^3

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_{21} x + B_2 y + C_2 z + D_2 = 0, \end{cases}$$

где $\operatorname{rang}\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2$, таким образом, прямая задана как линия пересечения двух плоскостей.

2) каноническими уравнениями L в \Re^3

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3},$$

где $M_0(x_0, y_0, z_0)$ — точка, принадлежащая прямой, а $\overline{a} = \{a_1, a_2, a_3\}$ — направляющий вектор.

3) параметрическими уравнениями

$$\begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t. \end{cases}$$

Пример. Составить уравнение плоскости, проходящей через точку M(2,-1,0) и прямую $\frac{x-2}{-1} = \frac{y-1}{2} = \frac{z+3}{1}$.

Решение.

Уравнение плоскости, проходящей через точку $M_0\big(x_0\,,y_0\,,z_0\big)$ и имеющей координаты вектора нормали $\overline{N}=\big\{A,B,C\big\}$, имеет вид

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
.

Найдем координаты вектора нормали. M(2,-1,0) — данная точка, $M_0(2,1,-3)$ — точка, лежащая на нашей прямой, $\overline{S}=\{-1,2,1\}$ — координаты направляющего вектора прямой. Тогда

$$\overline{N} = \begin{bmatrix} \overline{S}, \overline{MM_0} \end{bmatrix} = \begin{vmatrix} i & j & k \\ -1 & 2 & 1 \\ 0 & 2 & -3 \end{vmatrix} = \{-8, -3, -2\}.$$

Запишем уравнение искомой плоскости

$$-8(x-2)-3(y+1)-2z=0,$$

$$8x - 16 + 3y + 3 + 2z = 0,$$

$$8x + 3y + 2z - 13 = 0.$$

3. Варианты заданий для контрольной работы № 1

Элементы линейной алгебры

1. Доказать совместность системы линейных уравнений и решить ее двумя методами: 1) Крамера; 2) Гаусса.

1.1.
$$\begin{cases} 2x_1 - 7x_2 + x_3 = -4, \\ x_1 + x_2 - x_3 = 1, \\ 4x_1 - x_2 + x_3 = 4. \end{cases}$$

1.3.
$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 - 3x_2 - x_3 = 10, \\ x_1 - x_2 + x_3 = 6. \end{cases}$$

1.5.
$$\begin{cases} x_1 + 2x_2 + x_3 = 0, \\ 2x_1 - 7x_2 + 2x_3 = -11 \\ 2x_1 + 4x_2 + 5x_3 = 3. \end{cases}$$

1.7.
$$\begin{cases} x_1 - 2x_2 - 3x_3 = 7, \\ 2x_1 - 2x_2 + x_3 = 2, \\ x_1 - 5x_2 + 4x_3 = -10. \end{cases}$$

1.9.
$$\begin{cases} x_1 + 4x_2 - 5x_3 = 1, \\ 3x_1 - 2x_2 + x_3 = -9, \\ 5x_1 + 2x_2 + 4x_3 = -2. \end{cases}$$

1.11.
$$\begin{cases} 3x_1 + 2x_2 + 2x_3 = 7, \\ -x_1 + 2x_2 + 3x_3 = 4, \\ 2x_1 + 2x_2 + x_3 = 5. \end{cases}$$

1.13.
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 8, \\ 2x_1 - 6x_2 + x_3 = 13, \\ x_1 - x_2 + x_3 = 6. \end{cases}$$

1.15.
$$\begin{cases} x_1 + x_2 - x_3 = -3, \\ x_1 + x_2 + x_3 = -1, \\ x_1 - x_2 - x_3 = -5. \end{cases}$$

1.17.
$$\begin{cases} 3x_1 + x_2 - 2x_3 = 14 \\ x_1 - x_2 + x_3 = 0, \\ 2x_1 + 3x_2 + 4x_3 = 1. \end{cases}$$

1.19.
$$\begin{cases} x_1 + x_2 + x_3 = 1, \\ 2x_1 - x_2 + x_3 = -5, \\ 3x_1 + 2x_2 + 2x_3 = 0 \end{cases}$$

1.2.
$$\begin{cases} x_1 - x_2 + x_3 = 4, \\ 2x_1 - 3x_2 - 4x_3 = -3, \\ x_1 + 8x_2 - 3x_3 = -13. \end{cases}$$

1.4.
$$\begin{cases} x_1 - 4x_2 - x_3 = -5, \\ 2x_1 + x_2 - 3x_3 = 9, \\ 3x_1 + 2x_2 + x_3 = 9. \end{cases}$$

1.6.
$$\begin{cases} x_1 - x_2 + 2x_3 = 4, \\ 3x_1 - x_2 - x_3 = 2, \\ 5x_1 - 3x_2 + x_3 = 6. \end{cases}$$

1.8.
$$\begin{cases} x_1 - 2x_2 - 3x_3 = 4, \\ 4x_1 - 3x_2 + x_3 = -2, \\ 3x_1 + x_2 - x_3 = -3. \end{cases}$$

1.8.
$$\begin{cases} x_1 - 2x_2 - 3x_3 = 4, \\ 4x_1 - 3x_2 + x_3 = -2, \\ 3x_1 + x_2 - x_3 = -3. \end{cases}$$
1.10.
$$\begin{cases} 3x_1 + x_2 + x_3 = 3, \\ 4x_1 + 2x_2 - 5x_3 = -10, \\ 2x_1 - x_2 + x_3 = 6. \end{cases}$$

1.12.
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 5, \\ x_1 + x_2 - 2x_3 = -4, \\ 3x_1 - x_2 + 5x_3 = 14. \end{cases}$$

1.14.
$$\begin{cases} x_1 + x_2 - x_3 = 5, \\ 2x_1 + x_2 + x_3 = 5, \\ x_1 - 3x_2 + x_3 = -5. \end{cases}$$

1.16.
$$\begin{cases} x_1 - 2x_2 + x_3 = 0, \\ -x_1 + x_2 + 2x_3 = 4, \\ 3x_1 - x_2 + x_3 = 6. \end{cases}$$

1.18.
$$\begin{cases} x_1 + x_2 + x_3 = -3, \\ 2x_1 - 2x_2 + 3x_3 = -3, \\ x_1 - x_2 + 3x_3 = -3. \end{cases}$$

1.20.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = 1, \\ 2x_1 - x_2 - 2x_3 = 0, \\ x_1 - 3x_2 + 5x_3 = 17. \end{cases}$$

2. Найти общее и одно частное решение однородной системы линейных уравнений.

2.1.
$$\begin{cases} 3x_1 + x_2 - 4x_3 + 2x_4 + x_5 = 0, \\ 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 + 11x_2 + 34x_4 - 5x_5 = 0. \end{cases}$$

2.2.
$$\begin{cases} 7x_1 + 2x_2 - x_3 - 2x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + x_3 - x_4 - x_5 = 0, \\ 2x_1 + 3x_2 + 2x_3 + x_4 + x_5 = 0. \end{cases}$$

2.3.
$$\begin{cases} x_1 + x_2 + 10x_3 + x_4 - x_5 = 0, \\ 5x_1 - x_2 + 8x_3 - 2x_4 + 2x_5 = 0, \\ 3x_1 - 3x_2 - 12x_3 - 4x_4 + 4x_5 = 0. \end{cases}$$

2.4.
$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 + x_5 = 0, \\ x_1 + 10x_2 - 3x_3 - 2x_4 - x_5 = 0, \\ 4x_1 + 19x_2 - 4x_3 - 5x_4 - x_5 = 0. \end{cases}$$

2.5.
$$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 + x_5 = 0, \\ 2x_1 + x_2 + 3x_3 + x_4 - 5x_5 = 0, \\ x_1 + 3x_2 - x_3 + 6x_4 - x_5 = 0. \end{cases}$$

$$2.6. \begin{cases} 2x_1 + 2x_2 + 3x_3 - 3x_4 - x_5 = 0, \\ x_1 + 6x_2 - x_3 + x_4 + 2x_5 = 0, \end{cases}$$

2.6.
$$\begin{cases} x_1 + 6x_2 - x_3 + x_4 + 2x_5 = 0, \\ x_1 + 16x_2 - 6x_3 + 6x_4 + 7x_5 = 0. \end{cases}$$

2.7.
$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 - x_5 = 0, \\ x_1 + x_2 + 2x_3 - x_4 + x_5 = 0, \\ 2x_1 + 3x_2 + x_3 = 0. \end{cases}$$

$$2.8. \begin{cases} x_1 + 3x_2 - x_3 + 12x_4 - x_5 = 0, \\ 2x_1 - 2x_2 + x_3 - 10x_4 + x_5 = 0, \\ 3x_1 + x_2 + 2x_4 = 0. \end{cases}$$

$$2.9.\begin{cases} 7x_1 - 14x_2 + 3x_3 - x_4 + x_5 = 0, \\ x_1 - 2x_2 + x_3 - 3x_4 + 7x_5 = 0, \\ 5x_1 - 10x_2 + x_3 + 5x_4 - 13x_5 = 0. \end{cases}$$

$$2.10. \begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - 2x_2 - 6x_3 - 4x_4 + x_5 = 0, \\ 3x_1 - 2x_2 + 3x_3 + 3x_4 - x_5 = 0. \end{cases}$$

2.11.
$$\begin{cases} x_1 + x_2 + x_3 - x_4 - x_5 = 0, \\ 2x_1 + x_2 - 2x_3 - x_4 - 2x_5 = 0, \\ x_1 + 2x_2 + 5x_3 - 2x_4 - x_5 = 0. \end{cases}$$

$$2.12.\begin{cases} 2x_1 + 2x_2 - 2x_3 + x_4 - 3x_5 = 0, \\ 3x_1 - x_2 + 2x_3 - x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + 4x_3 - 2x_4 + 5x_5 = 0. \end{cases}$$

$$2.13.\begin{cases} 2x_1 + x_2 - x_3 + 7x_4 + 5x_5 = 0, \\ x_1 - 2x_2 + 3x_3 - 5x_4 - 7x_5 = 0, \\ 3x_1 - x_2 + 2x_3 + 2x_4 - 2x_5 = 0. \end{cases}$$

$$2.14.\begin{cases} 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 + 11x_2 + 34x_4 - 5x_5 = 0, \\ x_1 - 5x_2 - 2x_3 - 16x_4 + 3x_5 = 0. \end{cases}$$

$$2.15.\begin{cases} 3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0, \\ x_1 - 5x_2 + 2x_3 + x_4 + 3x_5 = 0. \end{cases}$$

$$2.16.\begin{cases} x_1 + 3x_2 - 5x_3 + 9x_4 - x_5 = 0, \\ 2x_1 + 7x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 + 4x_2 + 2x_3 - 16x_4 + 3x_5 = 0. \end{cases}$$

$$2.17.\begin{cases} 3x_1 + 2x_2 - 2x_3 - x_4 + 4x_5 = 0, \\ 7x_1 + 5x_2 - 3x_3 - 2x_4 + 4x_5 = 0, \\ x_1 + x_2 + x_3 - 7x_5 = 0. \end{cases}$$

$$2.18.\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + 3x_5 = 0, \\ 2x_1 + 2x_2 + 5x_3 - x_4 + 3x_5 = 0, \end{cases}$$

2.18.
$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + 3x_5 = 0, \\ 2x_1 + 2x_2 + 5x_3 - x_4 + 3x_5 = 0, \\ x_1 + x_2 + 4x_3 - 5x_4 + 6x_5 = 0. \end{cases}$$

2.19.
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 + x_5 = 0, \\ x_1 + 2x_2 + 7x_3 - 4x_4 + x_5 = 0, \\ x_1 + 2x_2 + 11x_3 - 6x_4 + x_5 = 0. \end{cases}$$

2.20.
$$\begin{cases} x_1 + x_2 + x_3 + 2x_4 + x_5 = 0, \\ x_1 - 2x_2 - 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - x_2 - 2x_3 + 3x_4 = 0. \end{cases}$$

Элементы векторной алгебры и аналитической геометрии

- 3. Даны координаты вершин пирамиды *ABCD*.
- 1) Найти модуль вектора 3BC 2DA;
- 2) Найти площадь грани АВС;
- 3) Найти длину высоты, опущенной из вершины D;
- 4) Найти косинус угла между векторами AB и AD;
- 5) Записать уравнение плоскости ABC;
- 6) Записать уравнение высоты, опущенной из вершины D на грань ABC.

- 3.1. A(-1,2,3), B(1,0,6), C(-2,5,-1), D(4,2,4).
- 3.2. A(-1,4,3), B(0,2,0), C(0,-1,-1), D(-4,3,5).
- 3.3. A(-2,1,1), B(3,-3,-2), C(-3,-6,-3), D(-5,2,0).
- 3.4. A(3,-3,2), B(5,-9,1), C(4,-6,-2), D(2,-2,4).
- 3.5. A(3,1,-4), B(2,-1,-7), C(4,-2,-2), D(2,2,-2).
- 3.6. A(4,1,2), B(5,3,5), C(8,4,0), D(5,0,7).
- 3.7. A(0,1,-2), B(6,3,1), C(4,4,-4), D(1,0,3).
- 3.8. A(3,2,-2), B(6,4,1), C(7,9,-4), D(5,1,3).
- 3.9. A(1,2,-2), B(-2,4,1), C(5,3,-4), D(3,1,3).
- 3.10. A(1,2,2), B(-2,4,6), C(5,3,0), D(3,1,7).
- 3.11. A(1,-3,-1), B(-2,-1,4), C(5,0,-3), D(0,-2,1).
- 3.12. A(-3,1,-2), B(4,-1,3), C(-2,4,-4), D(-4,3,-2).
- 3.13. A(3,1,-2), B(5,-1,3), C(4,4,-4), D(2,3,2).
- 3.14. A(-1,1,2), B(1,-1,-3), C(0,4,-4), D(-2,3,2).
- 3.15. A(-1,4,-2), B(2,2,-5), C(0,9,-4), D(-2,6,2).
- 3.16. A(1,1,-2), B(4,-1,-5), C(2,1,-4), D(0,3,2).
- 3.17. A(-1,1,-2), B(2,-1,6), C(0,2,-4), D(-2,3,2).
- 3.18. A(-1,2,-2), B(2,0,6), C(3,3,-4), D(-2,4,2).
- 3.19. A(-1,2,3), B(2,0,8), C(3,3,1), D(-2,4,7).
- 3.20. A(-1,2,0), B(2,0,5), C(3,3,-2), D(-2,4,3).
- 4. В соответствии с вариантом выполнить задание.
- 4.1. Найти точку пересечения медиан треугольника, зная координаты его вершин: A(1,2), B(2,3), C(1,3).
- 4.2. Даны уравнения двух смежных сторон параллелограмма x + 2y 5 = 0, 2x + y 4 = 0 и точка пересечения его диагоналей (1,1). Составить уравнения двух других сторон параллелограмма.
- 4.3. Даны вершины треугольника A(1,-2), B(-1,1) и точка пересечения его высот (8,-1). Составить уравнения сторон треугольника.
- 4.4. Даны вершины треугольника: A(1,2), B(-2,0), C(-1,1). Найти длины его высот.
- 4.5. Составить уравнения сторон квадрата, если известны одна из вершин (2,1) и точка пересечения диагоналей (-1,0).

- 4.6. Даны уравнения сторон прямоугольника x-3y+2=0, 3x+y-1=0 и одна из его вершин (-1,2). Составить уравнения двух других сторон этого прямоугольника.
- 4.7. Даны уравнения сторон параллелограмма x+y-1=0, 2x-3y+2=0 и уравнение одной из его диагоналей 3x-y+1=0. Найти координаты вершин этого параллелограмма.
- 4.8. Вычислить координаты вершин ромба, если известны уравнения двух других его сторон 2x y + 1 = 0, 2x y 2 = 0 и уравнение одной из его диагоналей x + y 1 = 0.
- 4.9. Составить уравнения сторон треугольника, если заданы две его вершины A(1,2), B(-2,3) и точка пересечения медиан (0,-1)
- 4.10. Даны вершины треугольника: A(1,-1), B(2,3), C(-1,2). Составить уравнения его высот.
- 4.11. Даны две смежные вершины квадрата A(1,-3), B(2,1). Составить уравнения его сторон.
- 4.12. Составить уравнения сторон и высот треугольника с вершинами в точках: A(2,-1), B(0,2), C(-1,3).
- 4.13. Даны две стороны прямоугольника x+3y-1=0, x+3y+2=0 и уравнение его диагонали 2x-y+1=0. Составить уравнения двух других сторон.
- 4.14. Составить уравнения сторон и высот треугольника с вершинами в точках: A(2,1), B(-1,2), C(3,2).
- 4.15. Три последовательные вершины параллелограмма имеют координаты: A(2,1), B(-1,3), C(1,-2). Составить уравнения диагоналей этого параллелограмма.
- 4.16. Составить уравнения сторон и найти внутренние углы треугольника с вершинами в точках: A(2,-1), B(1,2), C(-3,1).
- 4.17. Дан треугольник с вершинами в точках: A(2,-1), B(3,1), C(-2,2). Составить уравнения его высот и медиан.
- 4.18. Даны вершины треугольника A(-2,3), B(1,2) и точка пересечения его медиан M(2,4). Составить уравнения сторон этого треугольника.
- 4.19. Вычислить координаты вершин ромба, если известны уравнения его двух сторон x+3y-1=0, x+3y+2=0 и одна из его диагоналей 2x-y-1=0.
- 4.20. Найти точку пересечения высот треугольника с вершинами в точках: A(2,3), B(-1,2), C(1,-3).

5.14.

5. Привести уравнение кривой второго порядка f(x,y) = 0 к каноническому виду. Определить вид кривой и построить ее график.

5.1.
$$4x^2 - 8x + y^2 - 4y + 4 = 0$$
.

5.3.
$$4x^2 - 4x - 4y + 9 = 0$$
.

5.5.
$$x^2 + y^2 - 10x + 2y + 1 = 0$$
.

5.7.
$$2x^2 + 8x - y^2 + 4y + 6 = 0$$
.

5.9.
$$4x^2 - 8x + y^2 + 4y - 8 = 0$$
.

5.11.
$$2x^2 - 6x - 4y - 1 = 0$$
.

5.13.
$$x^2 + 2x + y^2 - 2y - 34 = 0$$
.

$$16x^2 + 64x + 9y^2 - 18y - 71 = 0.$$

5.15.
$$2x^2 + 20x - 5y + 55 = 0$$
.

5.17.
$$x^2 - x + y^2 - y + 1/4 = 0$$
.
5.19. $x^2 + 6x - 2y + 11 = 0$.

$$-x^2 + 4x + 2y^2 - 4y - 6 = 0.$$

5.2.
$$9x^2 + 18x + 4y^2 - 8y - 23 = 0$$
.

5.4.
$$4x^2 - 3y^2 - 8x + 6y - 11 = 0$$
.

5.6.
$$x^2 - 6x + 2y + 7 = 0$$
.

5.8.
$$x^2 + x + y^2 - y - 1/2 = 0$$
.

5.10.
$$x^2 - 4x + y^2 - 2y + 1 = 0$$
.

5.12.
$$x^2 - 2x - y^2 + 2y - 12 = 0$$
.

5.16.
$$4x^2 - 24x - 3y^2 - 6y + 45 = 0$$
.

5.18.
$$4x^2 - 8x + y^2 + 4y - 8 = 0$$
.

4. Методические указания к выполнению контрольной работы №2 ВВЕДЕНИЕ В АНАЛИЗ

Предел функции

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Число y_0 называется *пределом функции* f(x) при x, стремящемся к x_0 , если для любого $\varepsilon > 0$ можно указать такое число $\delta > 0$, что для всех x, отличных от x_0 и удовлетворяющих неравенству $0 < |x - x_0| < \delta$, выполняется неравенство $|y_0 - f(x)| < \varepsilon$.

Если y_0 есть предел функции f(x) при x стремящемся к x_0 то пишут

$$\lim_{x \to x_0} f(x) = y_0 \text{ или } f(x) \to y_0 \text{ при } x \to x_0.$$

Число y_1 называется пределом функции f(x) в точке x_0 слева (пишут $\lim_{x\to x_0-0} f(x)=y_1$), если f(x) стремится к пределу y_1 при x ,

стремящемся к числу x_0 так, что принимает только значения, меньшие x_0 . Если x принимает только значения, большие x_0 , то пишут

 $\lim_{x \to x+0} f(x) = y_2$ и называют y_2 пределом функции f(x) в точке x_0 справа.

При вычислении пределов функций используются следующие теоремы:

Если каждая из функций y = f(x) и $g = \varphi(x)$ имеет конечный предел при $x \to x_0$, то сумма, разность и произведение этих функций также имеет конечный предел, причем

$$\lim_{x \to x_0} |f(x) \pm \varphi(x)| = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} \varphi(x),$$

$$\lim_{x \to x_0} |f(x) \cdot \varphi(x)| = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} \varphi(x),$$

Если, кроме того, $\lim_{x\to x_0} \varphi(x) \neq 0$,, то и частное $\frac{f(x)}{\varphi(x)}$ имеет конеч-

ный предел, причем
$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} \varphi(x)}.$$

Следствие:

- 1. Постоянный множитель можно выносить за знак предела $\lim_{x \to x_0} (Cf(x)) = C \lim_{x \to x_0} f(x)$, где C = const.
- 2. Если $\lim_{x\to x_0} f(x) = b$ и m натуральное число, то

$$\lim_{x \to x_0} (f(x))^m = \left(\lim_{x \to x_0} f(x)\right)^m.$$

Кроме того, при вычислении пределов нужно обратить внимание на то, что элементарные функции непрерывны там, где они определены, т.е.

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{1}$$

Пример. Найти $\lim_{x\to 1} \frac{2x^3 + x^2 - 3x + 1}{4x - 2}$.

Решение.

$$\lim_{x \to 1} \frac{2x^3 + x^2 - 3x + 1}{4x - 2} = \frac{2 \lim_{x \to x_0} x^3 + \lim_{x \to x_0} x^2 - 3 \lim_{x \to x_0} x + 1}{4 \lim_{x \to x_0} x - 2} = \frac{2 \cdot 1^3 + 1^3 - 3 \cdot 1 + 1}{4 \cdot 1 - 2} = \frac{1}{2}$$

Однако, бывают случаи, когда теоремы о пределах суммы, частного и произведения неприменимы, т.к. при вычислении пределов получаются неопределенности $\left(\frac{0}{0}\right), \left(\frac{\infty}{\infty}\right), (0\cdot\infty), \left(1^\infty\right), \left(0^0\right), (\infty-\infty), \left(\infty^0\right)$.

Для вычисления таких пределов функцию f(x) заменяют функцией $f_1(x)$, принимающей в окрестности точки x_0 те же значения, что и f(x) и определенной в точке x_0 . Пределы таких функций равны, т.е.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f_1(x) = f(x_0).$$

Рассмотрим простейшие приемы раскрытия неопределенностей и нахождения пределов функций.

Неопределенность
$$\left(\frac{0}{0}\right)$$
.

Рассмотрим предел дробно-рациональной функции, когда при $x \to x_0$ и числитель и знаменатель дроби имеют пределы, равные нулю.

Пример. Найти
$$\lim_{x\to 2} \frac{x^3 - 8}{x^2 - 4}$$
.

Решение.

Непосредственный переход к пределу по формуле (1), дает неопределенность $\left(\frac{0}{0}\right)$, т.е. функция в точке $x_0=2$ неопределена. Для решения задачи поступим следующим образом, разделим числитель и знаменатель дроби на (x-2), получим

$$\frac{x^3 - 8}{x^2 - 4} = \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x + 2)} = \frac{(x^2 + 2x + 4)}{(x + 2)}, \quad x \neq 2.$$

Тогда
$$\lim_{x \to x_0} \frac{(x^3 - 8)}{(x^2 - 4)} = \lim_{x \to x_0} \frac{(x^2 + 2x + 4)}{(x + 2)} = \frac{2^2 + 4 + 4}{2 + 2} = \frac{12}{4} = 3.$$

Сформулируем правило.

Для того, чтобы найти предел дробно-рациональной функции в случае, когда при $x \to x_0$ и числитель, и знаменатель дроби имеют пределы, равные нулю, надо числитель и знаменатель дроби разделить на $(x-x_0)$ и перейти к пределу $x \to x_0$ в полученном выражении. Если и после этого неопределенность сохраняется, то надо произвести повторное деление на $(x-x_0)$.

Пусть f(x) — дробь, содержащая иррациональные выражения.

Пример. Найти.
$$\lim_{x\to 0} \frac{x}{2-\sqrt{x+4}}$$
.

Решение.

Умножим числитель и знаменатель дроби на выражение $\left(2+\sqrt{x+4}\right)$. Тогда

$$\lim_{x \to 0} \frac{x}{2 - \sqrt{x+4}} = \lim_{x \to 0} \frac{x(2 + \sqrt{x+4})}{(2 - \sqrt{x+4})(2 + \sqrt{x+4})} = \lim_{x \to 0} \frac{x(2 + \sqrt{x+4})}{4 - (x+4)} =$$

$$\lim_{x \to 0} \frac{x(2+\sqrt{x+4})}{-x} = \lim_{x \to 0} \left(-(2+\sqrt{x+4})\right) = -4.$$

Пример. Найти $\lim_{x\to 0} \frac{\sqrt[3]{1+x^3}-1}{x^3}$.

Решение.
$$\lim_{x\to 0} \frac{\left(\sqrt[3]{1+x^3}-1\right)\left(\sqrt[3]{\left(1+x^3\right)^2}+\sqrt[3]{1+x^3}+1\right)}{x^3\left(\sqrt[3]{\left(1+x^3\right)^2}+\sqrt[3]{1+x^3}+1\right)} =$$

$$\lim_{x \to 0} \frac{\left(1 + x^3 - 1\right)}{x^3 \left(\sqrt[3]{\left(1 + x^3\right)^2} + \sqrt[3]{1 + x^3} + 1\right)} = \lim_{x \to 0} \frac{x^3}{x^3 \left(\sqrt[3]{\left(1 + x^3\right)^2} + \sqrt[3]{1 + x^3} + 1\right)} = \frac{1}{3}.$$

Правило. Чтобы найти предел дроби, содержащей иррациональные выражения, в случае, когда пределы числителя и знаменателя дроби равны нулю, надо освободиться от имеющихся иррациональностей, после этого сделать необходимые упрощения (приведение подобных членов, сокращение одинаковых множителей и т. п.) и перейти к пределу при $x \to x_0$ в полученном выражении.

Замечание. В этом случае используются формулы сокращенного умножения

$$a^{2}-b^{2} = (a-b)(a+b),$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2}),$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2}).$$

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

Неопределенность вида $\left(\frac{\infty}{\infty}\right)$.

Рассмотрим предел при $x \to \infty$ отношения двух многочленов

$$\frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m}.$$

В данном случае теорема о пределе дроби неприменима, т.к. пределы числителя и знаменателя не существуют.

Преобразуем дробь следующим образом:

Преооразуем дрооь следующим ооразом:
$$\frac{a_0x^n+a_1x^{n-1}+...+a_n}{b_0x^m+b_1x^{m-1}+...+b_m}=\frac{x^n\Big(a_0+a_1/x+a_2\big/x^2+...+a_n\big/x^n\Big)}{x^m\Big(b_0+b_1/x+a_2\big/x^2+...+b_m\big/x^m\Big)}=\\ =\frac{x^{n-m}\Big(a_0+a_1/x+a_2\big/x^2+...+a_n\big/x^n\Big)}{\Big(b_0+b_1/x+a_2\big/x^2+...+b_m\big/x^m\Big)};$$
Очевидно, что
$$\lim_{x\to\infty}\frac{(a_0+a_1/x+a_2\big/x^2+...+a_n\big/x^n\Big)}{(b_0+b_1/x+a_2\big/x^2+...+b_m\big/x^m\Big)}=\frac{a_0}{b_0};$$
и
$$\lim_{x\to\infty}x^{n-m}=\begin{cases} 1, & n=m,\\ 0, & n< m,\\ \infty, & n>m.\end{cases}$$
Тогда
$$\lim_{x\to\infty}\frac{x^{n-m}\Big(a_0+a_1/x+a_2\big/x^2+...+a_n\big/x^n\Big)}{\Big(b_0+b_1/x+a_2\big/x^2+...+a_n\big/x^n\Big)}=\begin{cases} \infty, & n>m,\\ a_0/b_0, & n=m,\\ 0, & n< m.\end{cases}$$

Правило. Чтобы вычислить предел дробно-рациональной функции в случае, когда при $x \to \infty$ числитель и знаменатель дроби имеют пределы, равные бесконечности, надо числитель и знаменатель дроби разделить на x в наибольшей степени, встречающейся в членах дроби, а затем прейти к пределу.

Пример. Найти
$$\lim_{x \to \infty} \frac{15x^4 - 8x^3 + 4x^2 + x - 7}{3x^4 + 2x^2 + 10}$$
.

Решение.

$$\lim_{x \to \infty} \frac{15x^4 - 8x^3 + 4x^2 + x - 7}{3x^4 + 2x^2 + 10} = \lim_{x \to \infty} \frac{15 - 8/x + 4/x^2 + 1/x^3 - 7/x^4}{3 + 2/x^2 + 10/x^4} = \frac{15}{3} = 5.$$

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

Пример. Найти
$$\lim_{x\to\infty} \frac{1000x^2 + 100x + 1}{0.1x^5 + 0.3x^3 + 0.01}$$
.

Решение.

$$\lim_{x \to \infty} \frac{1000x^2 + 100x + 1}{0.1x^5 + 0.3x^3 + 0.01} = \lim_{x \to \infty} \frac{1000/x^3 + 100/x^4 + 1/x^5}{0.1 + 0.3/x^2 + 0.01/x^5} = \frac{0}{0.1} = 0.$$

Пример. Найти
$$\lim_{x \to \infty} \frac{2x^2 - 12}{x + 5}$$
.

Решение.

$$\lim_{x \to \infty} \frac{2x^2 - 12}{x + 5} = \lim_{x \to \infty} \frac{2 - 12/x^2}{1/x + 5/x^2} = \frac{2}{0} = \infty.$$

Пусть f(x) — дробь, содержащая иррациональности. При $x \to \infty$ имеем неопределенность $\left(\frac{\infty}{\infty}\right)$, которую раскрывают по правилу, указанному в предыдущем пункте, т.е. делят числитель и знаменатель дроби на x в высшей степени, а затем переходят к пределу при $x \to \infty$.

Пример. Найти
$$\lim_{x\to\infty} \frac{\sqrt{x^2+5}}{x+3}$$
.

Решение.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 5}}{x + 3} = \lim_{x \to \infty} \frac{\sqrt{x^2/x^2 + 5/x^2}}{x/x + 3/x} = \lim_{x \to \infty} \frac{\sqrt{1 + 5/x^2}}{1 + 3/x} = \frac{1}{1} = 1.$$

Первый замечательный предел

Для раскрытия неопределенности $\left(\frac{0}{0}\right)$ от функций, содержащих тригонометрические и обратные тригонометрические функции используют первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x}$$

и следствия из него

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1, \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = 1.$$

Примеры.

1)
$$\lim_{x \to 0} \frac{\sin 3x}{\arctan x/2} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{x/2}{\arctan x/2} \cdot \frac{3x}{x/2} =$$

$$= \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{x/2}{\arctan x/2} \cdot \lim_{x \to 0} \frac{3x}{x/2} = 1 \cdot 1 \cdot 6 = 6;$$

2)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^3} = \lim_{x \to 0} \frac{2\sin^2 x}{x^3} = 2\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{1}{x} = 2 \cdot \lim_{x \to 0} \frac{1}{x} = \infty.$$

Замечание. В этом примере использована формула тригонометрии

$$\sin^2\alpha = \frac{1-\cos 2\alpha}{2}.$$

3)
$$\lim_{x \to 0} \frac{x + \sin x}{2x + \lg x} = \lim_{x \to 0} \frac{\frac{x}{x} + \frac{\sin x}{x}}{\frac{2x}{x} + \frac{\lg x}{x}} = \lim_{x \to 0} \frac{1 + \frac{\sin x}{x}}{2 + \frac{\lg x}{x}} = \frac{1 + 1}{2 + 1} = \frac{2}{3}.$$

Второй замечательный предел

Для раскрытия неопределенностей вида (1^{∞}) используют предел

$$\lim_{x \to 0} \left(1 + \frac{1}{x} \right)^x = e \quad \text{или} \quad \lim_{t \to \infty} \left(1 + t \right)^{1/t} = e$$

Пример. Найти
$$\lim_{x\to\infty} \left(\frac{x+3}{x-2}\right)^{2x+1}$$
.

Решение.

Очевидно, что
$$\lim_{x \to \infty} \left(\frac{x+3}{x-2} \right) = \lim_{x \to \infty} \left(\frac{1+3/x}{1-2/x} \right) = 1$$
, a $\lim_{x \to \infty} (2x+1) = \infty$.

Таким образом, имеем неопределенность (1^{∞}) . Воспользуемся вторым замечательным пределом, для этого преобразуем сначала выражение, стоящее в скобках, а именно, добавим и вычтем единицу

$$\left(1 + \left(\frac{x+3}{x-2} - 1\right)\right)^{2x-1} = \left(1 + \frac{x+3-x+2}{x-2}\right)^{2x+1} = \left(1 + \frac{5}{x-2}\right)^{2x+1} = \left(1 + \frac{1}{(x-2)/5}\right)^{2x+1}$$

Теперь показатель степени (2x+1) домножим и разделим на дробь

$$\frac{x-2}{5}$$
,

$$\left(1+\frac{1}{(x-2)/5}\right)^{\frac{x-2}{5}\cdot(2x+1)\cdot\frac{5}{x-2}}.$$

Перейдем к пределу при $x \to \infty$

$$\lim_{x \to \infty} \left[\left(1 + \frac{1}{(x-2)/5} \right)^{\frac{(2x+1)}{x-2}} \right] = \lim_{x \to \infty} \left[\left(1 + \frac{1}{(x-2)/5} \right)^{\frac{x-2}{5}} \right]^{\frac{\lim_{x \to \infty} \frac{5(2x+1)}{x-2}}{x-2}} = e^{10},$$

$$\text{Так как} \quad \lim_{x \to \infty} \frac{5(2x+1)}{x-2} = \lim_{x \to \infty} \frac{(10x+5)}{x-2} = \lim_{x \to \infty} \frac{(10+5/x)}{1-2/x} = 10.$$

Непрерывность функций

Определение 1. Функция y = f(x) с областью определения D называется непрерывной в точке x_0 , если выполнены следующие условия:

- 1) функция y = f(x) определена в точке x_0 , т.е. $x_0 \in D$;
- 2) существует $\lim_{x \to x_0} f(x)$;

3)
$$\lim_{x \to x_0} f(x) = f(x_0)$$
.

Условие пункта 2 эквивалентно существованию равных односторонних пределов функции f(x) в точке x_0 , т.е.

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0} f(x_0).$$

Если в точке x_0 нарушено хотя бы одно из условий 1–3, то точка x_0 называется точкой разрыва функции y = f(x).

При исследовании функции на непрерывность пользуются следующей **теоремой:**

Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

Определение 2. Если функция y = f(x) непрерывна в каждой точке некоторого интервала (a,b), где a < b, то говорят, что функция непрерывна на этом интервале.

Следовательно, функция может иметь разрыв в точках, где она меняет способ своего задания или не определена.

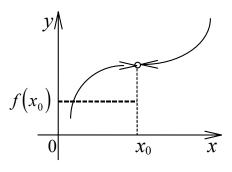
Существуют следующие виды точек разрыва.

1. Если в точке x_0 существует конечный

предел функции f(x), но он не равен значению функции в этой точке, т.е.

$$\lim_{x \to x_0} f(x) \neq f(x_0),$$

то такая точка называется точкой разрыва I рода (устранимый разрыв).



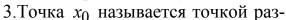
2. Точка x_0 называется точкой разрыва I рода

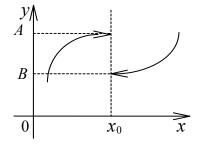
(точка скачка) функции f(x), если в этой точке существуют конечные односторонние пределы функции

$$\lim_{x \to x_0 - 0} f(x) = A,$$

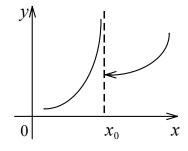
$$\lim_{x \to x_0 + 0} f(x) = B, \quad (A, B - \text{const}),$$

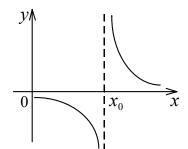
но они не равны между собой.

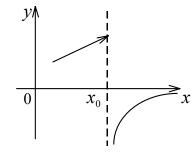




рыва II рода или точкой бесконечного разрыва, если хотя бы один из односторонних пределов функции f(x) в точке x_0 равен бесконечности $(\pm \infty)$.







Пример. Исследовать функции на непрерывность, найти точки разрыва и определить их тип:

a)
$$f(x) = \begin{cases} -\frac{1}{2}x^2 & \text{при} \quad x \le 2, \\ x, & \text{при} \quad x > 2. \end{cases}$$

Данная функция определена на всей числовой оси. Она задана двумя различными формулами для интервалов $(-\infty;2]$ и $(2,+\infty)$ и может

иметь разрыв в точке $x_0 = 2$, где меняется способ ее задания. Найдем односторонние пределы в точке $x_0 = 2$:

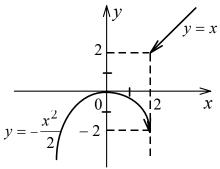
$$\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} \left(-\frac{1}{2}x^2 \right) = -\frac{1}{2} \cdot 2^2 = -2,$$

так как слева от точки $x_0 = 2$ функция $f(x) = -\frac{1}{2}x^2$,

$$\lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} x = 2,$$

так как справа от точки $x_0 = 2$ функция f(x) = x.

Таким образом, в точке $x_0=2$ функция f(x) имеет конечные односторонние пределы, но они не равны между собой $-2 \neq 2$. Следовательно, $x_0=2$ - точка разрыва I рода (точка скачка). Во всех остальных точках числовой оси данная функция непрерывна, так как формулы, которыми она задана определяют элементарные непрерывные функции. Построим график этой функции.



6)
$$y = \frac{1}{x^2 - 25}$$

Функция y определена для всех значений кроме $x_1 = 5$ и $x_2 = -5$. Эта функция элементарная, значит, она непрерывна во всей области своего определения $D(y) = (-\infty; -5) \cup (-5; 5) \cup (5; +\infty)$. В точках $x_1 = 5$ и $x_2 = -5$ функция y имеет разрывы, так как нарушается первое условие непрерывности. Чтобы определить характер разрыва в этих точках, найдем односторонние пределы

$$\lim_{x \to 5-0} \frac{1}{x^2 - 25} = \lim_{x \to 5-0} \frac{1}{(x-5)(x+5)} = \frac{1}{(5-0-5)(5-0+5)} = \left(\frac{1}{-0 \cdot 10}\right) = \left(\frac{1}{-0}\right) = -\infty,$$

$$\lim_{x \to 5+0} \frac{1}{x^2 - 25} = \lim_{x \to 5-0} \frac{1}{(x-5)(x+5)} = \frac{1}{(5+0-5)(5+0+5)} = \left(\frac{1}{+0 \cdot 10}\right) = \left(\frac{1}{+0}\right) = +\infty,$$

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

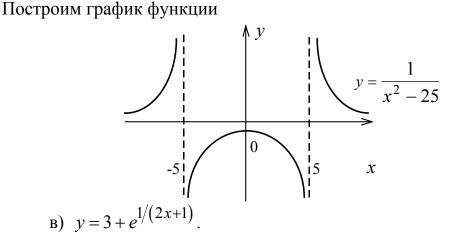
$$\lim_{x \to -5-0} \frac{1}{x^2 - 25} = \lim_{x \to 5-0} \frac{1}{(x-5)(x+5)} = \frac{1}{(-5-0-5)(-5-0+5)} = \left(\frac{1}{-10 \cdot (-0)}\right) =$$

$$= \left(\frac{1}{+0}\right) = +\infty,$$

$$\lim_{x \to -5+0} \frac{1}{x^2 - 25} = \lim_{x \to -5+0} \frac{1}{(x-5)(x+5)} = \frac{1}{(-5+0-5)(-5+0+5)} = \left(\frac{1}{-10 \cdot (+0)}\right) =$$

$$\left(\frac{1}{-0}\right) = -\infty.$$

Поскольку все односторонние пределы равны бесконечности, функция $y = \frac{1}{x^2 - 25}$ терпит в точках $x_1 = 5$ и $x_2 = -5$ разрывы II рода.



Функция определена и непрерывна на всей числовой оси, кроме точки $x_0 = -1/2$. Из этого следует, что в точке $x_0 = -1/2$ функция y имеет разрыв. Найдем односторонние пределы

$$\lim_{x \to -1/2 \to 0} \left(3 + e^{\frac{1}{2x+1}} \right) = \left(3 + e^{\frac{1}{2 \cdot (-1/2 \to 0) + 1}} \right) = \left(3 + e^{\frac{1}{-0}} \right) = \left(3 + e^{-\infty} \right) =$$

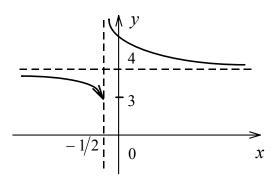
$$= \left(3 + \frac{1}{e^{\infty}} \right) = \left(3 + \frac{1}{\infty} \right) = \left(3 + 0 \right) = 3,$$

$$\lim_{x \to -1/2 \to 0} \left(3 + e^{\frac{1}{2x+1}} \right) = \left(3 + e^{\frac{1}{2 \cdot (-1/2 + 0) + 1}} \right) = \left(3 + e^{\frac{1}{+0}} \right) = \left(3 + e^{+\infty} \right) =$$

$$= \left(3 + \infty \right) = \infty.$$

Так как предел справа в точке $x_0 = -1/2$ равен бесконечности, заключа-

ем, что x_0 – точка разрыва II рода. Построим график функции $y = 3 + e^{1/(2x+1)}$



ПРОИЗВОДНАЯ И ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Пусть функция y = f(x) получила приращение $\Delta y = f(x_0 + \Delta x) - f(x_0)$, соответствующее приращению аргумента $\Delta x = x - x_0$.

Определение. Если существует предел отношения приращения функции Δy к вызвавшему его приращению аргумента Δx , при Δx , стремящимся к нулю, т. е. $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, то он называется производной функции y = f(x) по независимой переменной x и обозначается y_x' , или f_x' , или $\frac{dy}{dx}$.

Функция, имеющая производную, называется дифференцируемой. **Задача 1.** Используя определение, найти производные функций а) y = x, б) $y = \frac{2}{x}$.

Решение: а) Дадим аргументу x приращение Δx и найдем соответствующее значение функции $y(x + \Delta x) = x + \Delta x$, теперь найдем Δy

$$\Delta y = x + \Delta x - x = \Delta x$$
 и составим отношение $\frac{\Delta y}{\Delta x} = \frac{\Delta x}{\Delta x} = 1$.

Осталось вычислить $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1$, y' = (x)' = 1.

б) пусть аргумент x получил приращение Δx , новому значению аргумента соответствует значение функции $y(x+\Delta x) = \frac{2}{x+\Delta x}$.

Найдем приращение Δy .

$$\Delta y = \frac{2}{x + \Delta x} - \frac{2}{x} = -\frac{2\Delta x}{x(x + \Delta x)}.$$

Тогда
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\Delta x}{x(x+\Delta x)\Delta x} = -\frac{2}{x^2}$$
, $y' = \left(\frac{2}{x}\right)' = 2\left(x^{-1}\right)' = \frac{-2}{x^2}$.

Основные правила дифференцирования

Если C=const, а функции U = U(x), V = V(x) дифференцируемы,

ТО

$$1.(c)'=0;$$

$$2.(x)' = 1$$
;

$$3.(U \pm V)' = U' + V';$$

4.
$$(UV)' = U'V + V'U$$
;

$$5. \left(\frac{U}{V}\right)' = \frac{U'V - V'U}{V^2};$$

$$6.(CU)' = CU'.$$

ТАБЛИЦА ПРОИЗВОДНЫХ ОСНОВНЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

$$1.\left(x^{n}\right)'=nx^{n-1};$$

$$2.\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}, \quad x > 0;$$

$$3.\left(\sin x\right)' = \cos x;$$

12.
$$(\log_a x)' = \frac{1}{x \ln a} = \frac{\log_a e}{x};$$

$$4.(\cos x)' = -\sin x;$$

$$5.\left(\operatorname{tg}x\right)' = \frac{1}{\cos^2 x};$$

$$6.(\cot x)' = -\frac{1}{\sin^2 x};$$

7.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$$

8.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}};$$

9.
$$(\arctan x)' = \frac{1}{1+x^2};$$

$$10.(\operatorname{arcctg} x)' = -\frac{1}{1+x^2};$$

$$11.\left(\ln x\right)' = \frac{1}{x};$$

$$13.\left(a^{x}\right)'=a^{x}\ln a;$$

$$14.\left(e^{x}\right)'=e^{x};$$

$$15.(\sinh x)' = \cosh x;$$

$$16.(\operatorname{ch} x)' = \operatorname{sh} x;$$

$$17.(\operatorname{th}x)' = \frac{1}{\operatorname{ch}^2 x};$$

$$18.(cthx)' = -\frac{1}{sh^2x}$$
.

Правило дифференцирования сложной функции

Если y = f(U) и $U = \varphi(x)$, т.е. $y = f[\varphi(x)]$, где y и U имеют производные, то $y' = f'_u U'_x$. Здесь u = u(x) – промежуточный аргумент. Это правило распространяется на цепочку из любого конечного числа дифференцируемых функций.

Задача 2. Найти производные функций:

a)
$$2x^3 + \frac{3}{x^2} - 6\sqrt[3]{x^5}$$
, 6) $(x^5 - \ln x)^3$, B) $\left(\arctan \frac{x}{3}\right)^6$, Γ)

 $e^{-2x}\cos x\ln\sin x$

Решение: а) представим функцию в табличной форме как сумму степенных функций и затем только найдем производную.

$$y = 2x^{3} + 3x^{-2} - 6x^{5/3},$$

$$y' = 2 \cdot 3 \cdot x^{2} + 3\left(-2x^{-3}\right) - 6 \cdot \frac{5}{3}x^{2/3} = 6x^{2} - \frac{6}{x^{3}} - 10\sqrt[3]{x^{2}}.$$

б) введем промежуточный аргумент и затем воспользуемся правилом дифференцирования сложной функции.

$$U = x^5 - \ln x$$
, $y = U^3$, $y' = 3U^2 \cdot U_x' = 3\left(x^5 - \ln x\right)^2 \cdot \left(5x^4 - \frac{1}{x}\right)$;

в) пусть
$$U(x) = \operatorname{arctg} \frac{x}{3}$$
, где $\frac{x}{3} = V(x)$, тогда $U(x) = \operatorname{arctg} V$,

$$U' = \frac{1}{1+V^2} \cdot V_x' = \frac{1}{1+\left(\frac{x}{3}\right)^2} \cdot \frac{1}{3} = \frac{3}{9+x^2}.$$

Окончательно:
$$y = U^6$$
, $y' = 6U^5 \cdot U_x' = 6\left(\arctan\frac{x}{3}\right)^5 \cdot \frac{3}{9+x^2}$;

г) правило 4 можно распространить на любое число сомножителей, если перемножаемые функции дифференцируемы.

$$y = U(x) \cdot V(x) \cdot Z(x)$$
, $y' = U' \cdot V \cdot Z + U \cdot V' \cdot Z + U \cdot V \cdot Z'$, в данном случае

$$U = e^{-2x}, \ U' = e^{-2x} (-2x)' = -2e^{-2x}, \ V = \cos x, \ V' = -\sin x,$$
$$Z = \ln \sin x, \ Z' = \frac{1}{\sin x} (\sin x)' = \frac{\cos x}{\sin x},$$

$$\sin x \qquad \sin x$$

$$y' = e^{-2x} \left(-2\cos x \ln \sin x - \sin x \ln \sin x + \cos x \cdot \operatorname{ctg} x \right).$$

Дифференцирование сложной показательно-степенной функции

$y = U^V$. Логарифмическое дифференцирование.

Пусть U(x) и V(x) — дифференцируемые функции. Чтобы найти производную функции U^V предварительно прологарифмируем ее по основанию e: $\ln y = V \ln U$, теперь воспользуемся правилом 3 и 6

$$\frac{1}{y}y' = V_x' \cdot \ln U + V \cdot \frac{1}{U} \cdot U_x', \text{ откуда} \quad y' = U^V \cdot \left(V' \ln U + \frac{V}{U}U'\right) \quad (*)$$

Задача 3. Найти производные функций а) $(12+x)^{\sin x}$, б) $\sqrt[x]{\lg^5 x}$.

Решение: а) воспользуемся формулой (*): Пусть U = 12 + x, $V = \sin x$, найдем U' = 1, $V' = \cos x$ и подставим в формулу (*):

$$y' = (12 + x)^{\sin x} \left(\cos x \cdot \ln(12 + x) + \frac{\sin x}{12 + x} \cdot 1\right)$$

б) сначала прологарифмируем $\ln y = \frac{5}{x} \ln \lg x = 5x^{-1} \ln \lg x$. Дифференцируя левую и правую части равенства, получим:

$$\frac{y'}{y} = 5 \left(-x^{-2} \ln t g x + x^{-1} \frac{1}{t g x} \frac{1}{\cos^2 x} \right), \text{ теперь найдем } y'$$

$$y' = \frac{5}{x^2} \left(t g x \right) \frac{5}{x} \left(-\ln t g x + \frac{x}{\sin x \cdot \cos x} \right) = \sqrt[x]{t g^5 x} \cdot \frac{5}{x^2} \left(\frac{2x}{\sin 2x} - \ln t g x \right).$$

Метод, основанный на предварительном логарифмировании функции, не требует запоминания формулы и имеет более широкий спектр применения, в частности при дифференцировании большого количества сомножителей.

Задача 4. Найти производные функций:

a)
$$\sqrt[12]{\frac{e^{8x}x^{16}}{x^4+8}}$$
, B) $\frac{(x-3)^3 \cdot e^{6x}}{(x+3)^2 \operatorname{tg}^5 x}$.

Решение: а) воспользуемся свойствами логарифмической функции:

$$\ln a \cdot b = \ln a + \ln b$$
, $\ln \frac{a}{b} = \ln a - \ln b$, $\ln a^b = b \cdot \ln a$, $\ln e = 1$

Итак,
$$\ln y = \frac{1}{12} \left(8x + 16 \ln x - \ln \left(x^4 + 8 \right) \right), \qquad \frac{1}{y} y' = \frac{1}{12} \left(8 + \frac{16}{x} - \frac{4x^3}{x^4 + 8} \right),$$

$$y' = \frac{1}{3} \sqrt[3]{\frac{e^{8x}x^{16}}{x^4 + 8}} \cdot \left(\frac{2x + 4}{x} - \frac{x^3}{x^4 + 8}\right).$$

Дифференцирование функций, заданных параметрически

Если зависимость функции у и аргумента х задана посредством

параметра t

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, то $y'_{x} = \frac{y'_{t}}{x'_{t}}$, или

$$\frac{dy}{dx} = \frac{\frac{d\psi}{dt}}{\frac{d\phi}{dt}}.$$
 (1)

Пример 1. Найти $\frac{dy}{dx}$, если $x = R\cos t$, $y = R\sin t$. Это параметрические уравнения окружности $x^2 + y^2 = R^2$ с центром в начале координат и радиуса R.

Решение. Находим $\frac{dx}{dt} = -R \sin t$ и $\frac{dy}{dt} = R \cos t$.

Отсюда

$$\frac{dy}{dx} = \frac{R\cos t}{-R\sin t} = -\operatorname{ctg}t$$

Пример 2. Найти $\frac{dy}{dx}$ от функции: $x = \cos 3t$, $y = \lg^2 3t$.

Решение: $x'_t = -3\sin 3t$, $y'_t = 2\operatorname{tg}3t \cdot \frac{3}{\cos^2 3t}$, теперь по формуле (1)

найдем

$$\frac{dy}{dx} = \frac{2 \operatorname{tg} 3t}{-\cos^2 3t \cdot \sin 3t} = \frac{-2}{\cos^3 3t} = -2 \sec^3 3t.$$

Производная неявной функции

Пусть уравнение F(x,y)=0 не разрешено относительно функции y(x), т.е. функция y(x) задана неявно. Чтобы найти производную y_x' , надо продифференцировать левую и правую часть уравнения, учитывая, что y есть функция аргумента x.

Рассмотрим это правило на примерах.

Пример 1. Найти y'_x , если a) $x^2 + y^2 = 1$, б) $\cos(x+y) = y^3$.

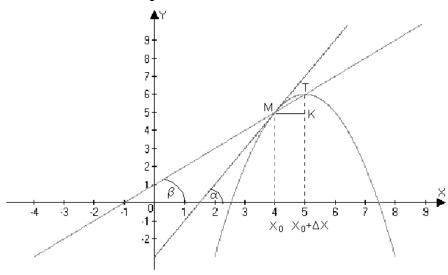
Решение: a) 2x + 2yy' = 0, выразив y', получим $y' = -\frac{x}{y} \cdot y'$;

б) дифференцируя обе части этого уравнения, получим уравнение относительно y'. $-\sin(x+y)(x+y)'_x = 3y^2y'_x$,

$$-\sin(x+y)(1+y'_x) = 3y^2y'_x ;$$

найдем теперь
$$y' = \frac{dy}{dx} = \frac{-\sin(x+y)}{3y^2 + \sin(x+y)}$$
.

Геометрический смысл производной



Здесь α — угол наклона касательной к графику функции y=f(x) и точке $M(x_0,y_0)$. Через две точки $M(x_0,y_0)$ и $T(x_0+\Delta x,y_0+\Delta y)$ кривой y=f(x) проведем секущую MT, ее угловой коэффициент $k_1=\mathrm{tg}\beta=\frac{TK}{MK}=\frac{\Delta y}{\Delta x}$. Двигая точку T по кривой к точке M, мы будем поворачивать секущую вокруг точки M, в результате секущая стремится занять положение касательной, проведенной к графику в точке, а угол β стремится к углу α — наклона касательной, т. е.

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \text{tg}\alpha = k ,$$

где k — угловой коэффициент касательной. Известное уравнение прямой $y-y_0=k(x-x_0)$ используем как уравнение касательной, проведенной к графику функции f(x) в точке (x_0,y_0) , с угловым коэффициентом $k=\operatorname{tg}\alpha=f'(x_0)$. Тогда $y-y_0=f'(x_0)(x-x_0)$ (1) — уравнение касательной.

Задача. Найти уравнение касательной к графику функции a) $y = 2\sin^4 2x$ в точке $x_{0=}\frac{\pi}{6}$, б) $x = t^4 - t + 3$, $y = t^6 - 4$ в точке t = 1.

Решение. а) Сначала вычислим ординату точки касания $y_0 = y(x_0) = 2\sin^4\frac{\pi}{3} = 2\left(\frac{\sqrt{3}}{2}\right)^4 = \frac{9}{8}$. Затем производную в точке $x_0 = \frac{\pi}{6}$,

 $y' = \left[8 \sin^3 2x \cdot \cos 2x \cdot 2 \right]_{x = \frac{\pi}{6}} = 3\sqrt{3}$. Это угловой коэффициент касательной.

Подставим найденные параметры в уравнение (1)

$$y - \frac{9}{8} = 3\sqrt{3}\left(x - \frac{\pi}{6}\right) - \text{искомая касательная};$$

б) кривая задана параметрически; найдем координаты точки касания, подставив значение параметра в уравнение кривой: $x_0 = 1 - 1 + 3 = 3$, $y_0 = 1 - 4 = 3$. Для отыскания углового коэффициента

k воспользуемся формулой $\frac{dy}{dx} = \frac{y_t'}{x_t'} = \frac{6t^5}{4t^3-1}, \quad k = \left[\frac{dy}{dx}\right]_{t=1} = \frac{6}{4-1} = 2,$ теперь запишем уравнение касательной y+3=2(x-3), или 2x-y-9=0.

Дифференциал функции и формула приближенного вычисления

<u>Определение</u>. Дифференциалом функции называется величина, пропорциональная бесконечно малому приращению аргумента Δx , отличающаяся от соответственного приращения функции Δy на величину более высокого порядка.

По определению производной: $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$, откуда следует,

что $\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x)$, где $\alpha(\Delta x)$ – бесконечно малая при $\Delta x \to 0$, т.е.

 $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$, тогда $\Delta y = f'(x)\Delta x + \Delta x \cdot \alpha(\Delta x)$, где первое слагаемое и

есть дифференциал

$$dy = f'(x)dx$$
, $\Delta x = dx$, $\Delta y \approx dy$. (2)

Определение дифференциала позволяет использовать его в приближенных вычислениях, заменив вычисление функции ее дифференциалом. Рассмотрим приращение функции: $\Delta y = f(x_0 + \Delta x) - f(x_0)$, или $f(x_0 + \Delta x) = f(x_0) + \Delta y$, тогда $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$. (3)

Это и есть формула приближенного вычисления. Ошибка, получаемая при приближенных вычислениях, есть бесконечно малая высшего порядка, чем приращение аргумента, т.к.

$$\lim_{\Delta x \to 0} \frac{\Delta y - dy}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x \cdot \alpha(\Delta x)}{\Delta x} = 0.$$

Задача 1. Найти дифференциалы функций:

а)
$$(x^3 + 6x - 1)^5$$
, б) $\operatorname{arctg} 8x$, в) $6^{\arcsin x}$.

Решение: а) $dy = f'(x)dx$, найдем сначала $f'(x) = 5(x^3 + 6x - 1)^4(3x^2 + 6)$ и затем $dy = 15(x^3 + 6x - 1)^4(x^2 + 2)dx$; б) $y' = \frac{1}{1 + (8x)^2}(8x)' = \frac{8}{1 + 64x^2}$, $dy = \frac{8dx}{1 + 64x^2}$; в) $y' = 6^{\arcsin x} \ln 6 (\arcsin x)' = 6^{\arcsin x} \frac{\ln 6}{\sqrt{1 - x^2}}$, $dy = \frac{6^{\arcsin x} \ln 6}{\sqrt{1 - x^2}}$

Задача 2. Найти приращение и дифференциал функции $y = x^2 - x$ при x = 1 и $\Delta x = 0,1$. Вычислить абсолютную и относительную ошибки, которые получаются при замене приращения функции ее дифференциалом.

Решение
$$y + \Delta y = y(x + \Delta x) = (x + \Delta x)^2 - (x + \Delta x)$$
, $\Delta y = y(x + \Delta x) - y(x) = x^2 + 2x\Delta x + (\Delta x)^2 - x - \Delta x - x^2 + x = \left[2x\Delta x + (\Delta x)^2 - \Delta x\right]_{x=1,\Delta x=0,1} = 0,11$; $dy = \left(x^2 - x\right)' dx = (2x - 1) dx$, $[dy]_{x=1,\Delta x=0,1} = 0,1$. Абсолютная ошибка $|\Delta y - dy| = |0,11 - 0,1| = 0,01$, относительная ошибка $\frac{|\Delta y - dy|}{\Delta y} \cdot 100\% = \frac{0,01}{0,11} \cdot 100\% \approx 9\%$.

Задача 3. Вычислить приближенно a) ctg44°, б) $\sqrt{10}$

Решение. Чтобы воспользоваться формулой (3) надо составить функцию y = f(x) (по виду вычисляемого выражения) и выбрать начальные условия так, чтобы Δx было мало, а $f(x_0)$ можно было легко подсчитать. В случае а) выбираем y = ctg x, $x_0 = 45^\circ$,

$$\Delta x = x - x_0 = 44^\circ - 45^\circ = -1^\circ = -\frac{\pi}{180} \approx -\frac{3,142}{180}, \ f(x) \approx f(x_0) + f'(x_0) \Delta x.$$

$$f'(x) = (\operatorname{ctg} x)' = \left[\frac{-1}{\sin^2 x} \right]_{x = x_0} = -\left(\sqrt{2}\right)^2 = -2, \quad f(x_0) = \operatorname{ctg} 45^\circ = 1,$$

$$\operatorname{ctg} 44^\circ \approx 1 + 2 \cdot \frac{\pi}{180} \approx 1 + \frac{3,142}{90} \approx 1,035;$$

б) чтобы Δx было мало, необходимо извлечь целую часть корня, т.е.

$$\sqrt{10} = \sqrt{1+9} = \sqrt{9(1+\frac{1}{9})} = 3\sqrt{1+\frac{1}{9}} , \quad \text{откуда} \qquad x_0 = 1, \quad \Delta x = \frac{1}{9} ,$$

$$f(x) = 3\sqrt{x} ,$$

$$f(x_0) = 3, \quad f'(x) = \frac{3}{2\sqrt{x}} , \quad f'(x_0) = \frac{3}{2} , \text{теперь вычислим приближенно}$$

$$\sqrt{10} :$$

$$\sqrt{10} = 3\sqrt{1+\frac{1}{9}} \approx 3 + \frac{3}{2} \cdot \frac{1}{9} \approx \frac{19}{6} = 3,1(6) \approx 3,17 .$$

Производные и дифференциалы высших порядков

<u>Определение 1</u>. Производной второго порядка от функции f(x) называется производная от производной первого порядка и обозначает-

ся символом
$$y''$$
 или f'' , или $\frac{d^2y}{dx^2}$.

Пример.
$$y = \sin^2 5x$$
, $y' = 2\sin 5x \cdot \cos 5x \cdot 5 = 5\sin 10x$, $y'' = 50\cos 10x$.

Определение 2. Производной n-го порядка называется производная первого порядка от производной (n-1)-го порядка и обозначается $y^{(n)}$ или

$$f^{(n)}(x)$$
, или $\frac{d^n y}{dx^n}$.

Пример.
$$y = \ln(x+3)$$
. Найти $y^{(n)}(x)$.

$$y' = \frac{1}{x+3} = (x+3)^{-1}, \ y'' = -(x+3)^{-2}, \ y''' = 1 \cdot 2 \cdot (x+3)^{-3} = 2!(x+3)^{-3},$$

 $y^{(4)} = -3!(x+3)^{-4}$, используя метод математической индукции, запишем формулу производной n-го порядка $y^{(n)} = (-1)^{n-1}(x+3)^{-n}(n-1)!$

<u>Определение 3</u>. Дифференциалом высшего порядка функции называется дифференциал от дифференциала (n-1)-го порядка:

$$d^{n}y = d(d^{n-1}y) = y^{(n)}dx^{n}$$
, в частности $d^{2}y = d(dy) = d(y'dx) = d(y')dx = y''dx^{2}$, здесь $dx = \text{const}$.

Пример:
$$y = \arctan 2x$$
. Найти d^2y .

$$y' = \frac{1}{1+4x^2} \cdot 2, \ y'' = -1 \cdot 2\left(1+4x^2\right)^{-2} 2 \cdot 4x = -\frac{16x}{\left(1+4x^2\right)^2};$$

Тогда

$$d^2y = -\frac{16x}{\left(1 + 4x^2\right)^2} dx^2.$$

Производная второго порядка от функции, заданной параметрически.

Если
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, то производные $y'_x = \frac{dy}{dx}$, $y''_{xx} = \frac{d^2y}{dx^2}$, последова-

тельно могут быть вычислены по формулам:

$$y'_{x} = \frac{dy}{dx} = \frac{y'_{t}}{x'_{t}}, \quad y''_{xx} = \frac{(y'_{x})'_{t}}{x'_{t}}, \quad y'''_{xxx} = \frac{(y''_{xx})'_{t}}{x'_{t}}$$
ит. д.

Для производной второго порядка имеет место формула

$$y''_{xx} = \left(\frac{y'_t}{x'_t}\right)_x' = \frac{y''_{tt} \cdot x'_t - y'_t \cdot x''_{tt}}{(x'_t)^2}.$$

Пример. Найти
$$\frac{d^2y}{dx^2}$$
 от функции
$$\begin{cases} x = t + \ln \cos t \\ y = t - \ln \sin t \end{cases}$$

Решение. Найдем сначала $x'_t = 1 - \frac{\sin t}{\cos t} = 1 - \operatorname{tg} t$,

$$y_t' = 1 - \operatorname{ctg} t = 1 - \frac{1}{\operatorname{tg} t}$$

тогда
$$\frac{dy}{dx} = \frac{1 - \operatorname{ctg} t}{1 - \operatorname{tg} t} = -\operatorname{ctg} t$$
, $\frac{d^2y}{dx^2} = \frac{\left(-\operatorname{ctg} t\right)'_t}{x'_t} = \frac{1}{\sin^2 t \cdot (1 - \operatorname{tg} t)}$.

Правило Лопиталя. Раскрытие неопределенностей при вычислении пределов

<u>Теорема</u>. Предел отношения двух бесконечно малых или двух бесконечно больших существует и равен отношению их производных:

$$\lim_{x \to a} \frac{f(x)}{\varphi(x)} = \lim_{x \to a} \frac{f'(x)}{\varphi'(x)}, \text{ если выполняются условия:}$$

- 1) функции f(x) и $\varphi(x)$ дифференцируемы в некоторой окрестности точки a и $\varphi(x) \neq 0$ в этой окрестности.
 - 2) $\lim_{x\to a} f(x) = \lim_{x\to a} \varphi(x) = 0$ (или $\lim_{x\to a} f(x) = \lim_{x\to a} \varphi(x) = \infty$).

3) существует $\lim_{x\to a} \frac{f'(x)}{\varphi'(x)}$ конечный или бесконечный.

Здесь a может быть числом или одним из символов: $+\infty, -\infty, \infty$.

Задача 1. Вычислить пределы: a)
$$\lim_{x \to \pi} \frac{\text{tg}x}{x - \pi}$$
, б) $\lim_{x \to \infty} \frac{e^x}{x^2}$.

Решение. а) Подставив предельное значение аргумента $x=\pi$, получаем неопределенность $\left\{\frac{0}{0}\right\}$, т.к. $tg\pi=0$, $\pi-\pi=0$ и функции дифференцируемы.

Найдем
$$\lim_{x \to \pi} \frac{\operatorname{tg} x}{x - \pi} = \left\{ \frac{0}{0} \right\} = \lim_{x \to \pi} \frac{\left(\operatorname{tg} x\right)'}{\left(x - \pi\right)'} = \frac{1}{\cos^2 \pi} = 1.$$

б) При $x \to \infty$ имеем неопределенность $\left\{ \frac{\infty}{\infty} \right\}$. Применим правило

Лопиталя:
$$\lim_{x \to \infty} \frac{e^x}{x^2} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{\left(e^x\right)'}{\left(x^2\right)'} = \lim_{x \to \infty} \frac{e^x}{2x} = \left\{ \frac{\infty}{\infty} \right\}$$
. Полученный

предел снова представляет неопределенность вида $\left\{\frac{\infty}{\infty}\right\}$, применяя еще

раз правило Лопиталя, найдем $\lim_{x\to\infty}\frac{e^x}{2}=\infty$.

Другие виды неопределенностей $\{\infty-\infty\}$, $\{0\cdot\infty\}$, $\{1^\infty\}$, $\{0^0\}$ можно свести к виду $\{\frac{0}{0}\}$ или $\{\frac{\infty}{\infty}\}$.

Задача 2. Найти предел
$$\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right)$$
.

Решение. Подставим предельное значение аргумента, получим неопределенность $\{\infty - \infty\}$, которая легко сводится к частному:

$$\lim_{x \to 0} \left(ctgx - \frac{1}{x} \right) = \lim_{x \to 0} \left(\frac{1}{tgx} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - tgx}{x \cdot tgx} = \lim_{x \to 0} \frac{1 - \frac{1}{\cos^2 x}}{tgx + \frac{x}{\cos^2 x}} = \lim_{x \to 0} \frac{\cos^2 x - 1}{\cos^2 x} = \lim_{x \to 0} \frac{\cos^2 x - 1}{\cos^2 x \cdot tgx + x} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x + 1} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x} = \lim_{x \to 0} \frac{-2\sin x \cdot \cos x}{\cos^2 x - \sin^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim_{x \to 0} \frac{-2\sin x}{\cos^2 x - \cos^2 x} = \lim$$

$$= \lim_{x \to 0} \frac{-\sin x}{\cos x} = 0.$$

Возрастание, убывание функции. Точки экстремума

Определение 1. Функция f(x) называется возрастающей (убывающей) на некотором промежутке [a,b], если для любых $x_1 < x_2$ этого промежутка $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$).

Функция возрастающая (убывающая) называется монотонной.

<u>Теорема 1</u>. (Условие монотонности)

Если функция f(x) 1) определена на [a,b], 2) имеет конечную производную f'(x) на (a,b), тогда, чтобы f(x) была возрастающей (убывающей) на [a,b], необходимо и достаточно, чтобы f'(x) > 0 (f'(x) < 0).

Задача 1. Найти интервалы монотонности функции $y = 3x - x^3$. Решение. Область определения функции $D(f) = (-\infty, \infty)$, f(x) дифференцируема всюду в области определения: $f'(x) = 3 - 3x^2$.

Решим неравенство $f'(x) > 0 \implies 3 - 3x^2 > 0$, $3(1 - x^2) > 0$, $|x| < 1 \implies -1 < x < 1$ — это интервал возрастания функции.

Соответственно неравенство $3-3x^2 < 0$ справедливо для всех $x \in (-\infty,-1) \cup (1,+\infty)$ – область убывания функции.

Определение 2. Точка x_0 называется точкой локального максимума (минимума), если в некоторой ее окрестности $(x_0 - \delta, x_0 + \delta)$ выполняется неравенство $f(x) < f(x_0)$ ($f(x) > f(x_0)$) для всех x этой окрестности.

Теорема 2. (Необходимое условие существования экстремума) Если f(x) 1) определена в окрестности точки x_0 , 2) дифференцируема в точке x_0 и 3) имеет в ней локальный экстремум, то $f'(x_0) = 0$. Точки, в которых производная f'(x) = 0 называются критическими. Замечание. Функция может иметь экстремум и в точках, где первая производная не существует. Например: $y = \begin{cases} \ln x, & x \ge 1, \\ -\ln x, & x < 1 \end{cases}$ Функция непрерывна в точке x = 1, но не дифференцируема т.к. $\lim_{x \to 1+0} y' = \lim_{x \to 1+0} \frac{1}{x} = 1$, $\lim_{x \to 1-0} y' = -1$ односторонние пределы не равны, $\lim_{x \to 1+0} y' = \lim_{x \to 1+0} \frac{1}{x} = 1$, но функция имеет минимум.

Теорема 3. (Достаточное условие экстремума)

Если функция f(x): 1) непрерывна в точке x_0 , 2) дифференцируема в некоторой области $(x_0 - \delta, x_0 + \delta)$, 3) $f'(x_0) = 0$ либо не существует и 4) при переходе через точку x_0 производная меняет знак, то x_0 точка экстремума, причем, если производная слева от x_0 отрицательна, а справа положительна, то x_0 — точка минимума; если слева от x_0 производная положительна (функция возрастает) а справа отрицательна (функция убывает), то x_0 — точка максимума.

Замечание: в промежутке между критическими точками производная сохраняет знак, следовательно, это промежутки монотонности.

<u>Теорема 4</u>. (Исследование на экстремум с помощью второй производной или второе достаточное условие экстремума).

Если 1) в точке x_0 функция f(x) дифференцируема и $f'(x_0) = 0$, 2) существует вторая производная, 3) $f''(x_0) \neq 0$ в окрестности $(x_0 - \delta, x_0 + \delta)$, то при $f''(x_0) > 0$ функция имеет минимум, а при $f''(x_0) < 0$ – максимум.

Итак, при исследовании функции на экстремум необходимо пользоваться правилами:

- 1. Найти первую производную y' = f'(x)
- 2. Найти критические точки x_i , решив уравнения y' = 0 и $y' = \infty$.
- 3. Проверить, меняет ли знак первая производная при переходе через точку x_i или установить знак второй производной $f''(x_i)$, классифицировать экстремум.
 - 4. Найти значение функции в экстремальных точках.

Задача. Исследовать на экстремум функцию $y = \frac{1}{x} \ln x$.

Решение. Область определения
$$D(f) = (0, \infty); \quad y' = \frac{1}{x^2} \cdot (1 - \ln x),$$

y'=0, $\ln x=1$, $x_1=e$, $y'=\infty$ при x=0. Это значение x не принадлежит области определения функции. Значит, x=e — единственная критическая точка. Проверим знак первой производной слева и справа от нее.

При x < e, $f'(x) = \frac{1}{x^2}(1 - \ln x) > 0$, функция возрастает, при x > e, f'(x) < 0 функция убывает, значит x = e — точка максимума, $y(e) = \frac{\ln e}{e} = \frac{1}{e}$ — максимальное значение функции.

Наибольшее и наименьшее значение функции

<u>Теорема Вейерштрасса</u>. Если функция непрерывна на замкнутом промежутке [a,b], то она достигает на нем наибольшее и наименьшее значения. Эти значения находятся либо на концах промежутка, либо в экстремальных точках.

Правило отыскания наибольшего и наименьшего значения функции

- 1. Найти первую производную и все критические точки x_i , принадлежащие [a,b].
 - 2. Вычислить значения $f(x_i)$.
 - 3. Вычислить значения функции на концах промежутка.
- 4. Сравнить все полученные значения функции $f(x_i)$, f(a), f(b) и выбрать среди них наибольшее и наименьшее.

Задача. Найти наибольшее и наименьшее значения функции $y = x^3 - 12x + 7$ на промежутке [-3,0].

Решение. Необходимое условие экстремума y' = 0, поэтому $3x^2 - 12 = 0$, а корни уравнения $x = \pm 2$ являются критическими точками, но промежутку принадлежит только x = -2. Найдем теперь y(-2) = 23 и на концах промежутка y(-3) = 16 и y(0) = 7. Среди них самое большое 23, самое меньшее 7.

Выпуклость и вогнутость кривой. Точки перегиба

Пусть кривая задана функцией y = f(x).

<u>Определение 1</u>. Кривая называется выпуклой вверх (вниз) на отрезке [a,b], если все точки кривой находятся ниже (выше) любой касательной к графику функции.

<u>Определение 2</u>. Точка $M_0(x_{0,y_0})$, отделяющая вогнутую часть от выпуклой, называется точкой перегиба графика функции f(x).

Теорема. Если функция f(x) дважды дифференцируема на некотором промежутке, причем f''(x) < 0 для любого x из этого промежутка, то на этом промежутке график функции выпуклый, если f''(x) > 0, то график вогнутый.

Из теоремы следует, что для нахождения промежутков (выпуклости) вогнутости надо найти вторую производную функции и определить промежутки, где она положительна (отрицательна). Необходимым условием существования точки перегиба является обращение в нуль второй производной или ее отсутствие в точке x_0 , то есть условие $f''(x_0) = 0$

В случае выполнения одного из этих условий точка x_0 называется критической точкой второго рода.

Достаточным условием того, что точка M_0- точка перегиба является смена знака второй производной при переходе через критические точки второго рода.

Правило нахождения интервалов выпуклости, вогнутости и точек перегиба функции.

- 1. Указать область определения функции.
- 2. Найти критические точки второго рода, принадлежащие области определения функции.
- 3. Определить знак второй производной в каждом интервале области определения между соседними критическими точками.
- 4. По знаку f''(x) установить интервалы выпуклости, вогнутости и по смене знака второй производной в окрестности точки наличие или отсутствие точки перегиба.

Асимптоты графика функции

<u>Определение.</u> Асимптотой графика функции называется прямая, к которой неограниченно приближается график функции при $x \to \infty$ или $y \to \infty$.

Различают вертикальные, горизонтальные и наклонные асимптоты.

1. Вертикальные асимптоты. Прямая x = a называется вертикальной асимптотой, если при $x \to a$ хотя бы один из односторонних пределов в точке x = a бесконечен, т.е. $\lim_{x \to a = 0} f(x) = \pm \infty$ или

 $\lim_{x \to a+0} f(x) = \pm \infty$ т. е. в точке x = a функция терпит разрыв второго рода.

Задача. Найти вертикальные асимптоты функции $y = \frac{1}{x^2 - 1}$.

Решение. При x = -1 и x = 1 функция неопределена. Найдем односторонние пределы f(x) при $x \to \pm 1$.

$$\lim_{x \to -1 - 0} \frac{1}{x^2 - 1} = \infty, \quad \lim_{x \to -1 + 0} \frac{1}{x^2 - 1} = -\infty;$$

$$\lim_{x \to 1 - 0} \frac{1}{x^2 - 1} = -\infty, \quad \lim_{x \to 1 + 0} \frac{1}{x^2 - 1} = +\infty;$$

Следовательно, x = 1, x = -1 вертикальные асимптоты графика.

Наклонные и горизонтальные асимптоты

<u>Определение.</u> Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x) при $x \to \pm \infty$, если эту функцию можно

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

представить в виде $f(x) = kx + b + \alpha(x)$, $\lim_{x \to \pm \infty} \alpha(x) = 0$, т.е. разность между ординатами точек кривой и асимптоты при $x \to \pm \infty$ есть бесконечно малая величина.

<u>Теорема.</u> Для того, чтобы график функции имел наклонную асимптоту, необходимо и достаточно, чтобы имели место соотношения: $k = \lim_{x \to \pm \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \pm \infty} [f(x) - kx],$ причем эти пределы могут быть

 $x \to \pm \infty$, $b = \lim_{x \to \pm \infty} f(x) = kx$, причем эти пределы могут оыть неравными при $x \to +\infty$ и при $x \to -\infty$. Если k = 0, $b = \lim_{x \to \pm \infty} f(x)$, получаем горизонтальную асимптоту y = b. Таким образом, прямая y = b является горизонтальной асимптотой кривой y = f(x), если $\lim_{x \to \pm \infty} f(x) = b$.

Задача 2. Найти асимптоты графика функции $y = \frac{x^2}{x-1}$.

Решение. $D(f) = (\infty,1) \cup (1,\infty)$.

Вычислим
$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{(x-1) \cdot x} =$$

$$= \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{x}{x-1} = \lim_{x \to \infty} \frac{x}{x-1} = \lim_{x \to \infty} \frac{x}{x(1-\frac{1}{x})} = 1,$$

Найдем b . $b = \lim_{x \to \infty} \left[\frac{x^2}{x-1} - x \right] = \lim_{x \to \infty} \frac{x^2 - x^2 + x}{x-1} = 1$. Получим уравнение

асимптоты y = x + 1; убедимся, что утверждение теоремы выполняется. Преобразуем функцию, выделив целую часть.

$$f(x) = \frac{x^2}{x-1} = \frac{x^2 - 1 + 1}{x-1} = x + 1 + \frac{1}{x-1},$$
 где $\lim_{x \to \pm \infty} \frac{1}{x-1} = 0$, $f(x) = x + 1 + \alpha(x)$

Кроме того, функция имеет вертикальную асимптоту x = 1, т. к.

$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1-0} \frac{x^2}{x-1} = \left\{-\frac{1}{0}\right\} = -\infty, \ \lim_{x \to 1+0} \frac{x^2}{x-1} = \left\{+\frac{1}{0}\right\} = +\infty$$

Задача 3. Найти асимптоты графика функции $y = e^{\frac{1}{2} - x}$.

Решение. Найдем $D(f) = (-\infty, 2) \cup (2, \infty)$. При x = 2 функция $y = e^{\frac{1}{2} - x}$ терпит разрыв второго порядка, т. к.

$$\lim_{x \to 2+0} e^{\frac{1}{2}-x} = e^{-\frac{1}{0}} = e^{-\infty} = 0, \ \lim_{x \to 2-0} e^{\frac{1}{2}-x} = e^{\frac{1}{0}} = e^{\infty} = \infty.$$

Таким образом, x = 2 является вертикальной асимптотой.

Найдем горизонтальные асимптоты.

 $\lim_{x \to \pm \infty} e^{\frac{1}{2-x}} = e^{\frac{1}{\infty}} = e^0 = 1$, следовательно, y = 1 является горизонтальной асимптотой.

Общая схема исследования функции

- 1. Найти область определения функции, исследовать ее поведение на границах области определения.
- 2. Найти точки разрыва и установить их характер с помощью односторонних пределов.
- 3. Исследовать периодичность, четность (нечетность), найти точки пересечения графика с осями координат.
 - 4. Найти интервалы монотонности и экстремумы функции.
- 5. Найти интервалы выпуклости, вогнутости и точки перегиба графика функции.
 - 6. Найти асимптоты графика.
 - 7. Построить график, используя результаты исследования.

Задача 4. Провести полное исследование и построить график функции

$$y = x + \frac{2x}{x^2 - 1} \,.$$

- 1. Найдем область определения D(f). из условия $x^2 1 \neq 0$, $x \neq 1, x \neq -1$, следовательно,
- 2. $x_1 = 1$, $x_2 = -1$ точки разрыва. Найдем односторонние пределы:

$$\lim_{x \to -1-0} \left(x + \frac{2x}{x^2 - 1} \right) = \lim_{x \to -1+0} \frac{x(x^2 + 1)}{x^2 - 1} = -\infty, \quad \lim_{x \to -1+0} \frac{x(x^2 + 1)}{x^2 - 1} = \infty,$$

$$\lim_{x \to 1-0} \left(x + \frac{2x}{x^2 - 1} \right) = 1 + \frac{2}{-0} = 1 - \infty = -\infty, \quad \lim_{x \to 1+0} \left(x + \frac{2x}{x^2 - 1} \right) = 1 + \frac{2}{0} = \infty.$$

Отсюда следует, что $x_1 = 1$ и $x_2 = -1$ — точки разрыва второго рода, и $x = \pm 1$ — вертикальные асимптоты.

3. Для установления симметрии графика функции найдем $f(-x) = -x + \frac{2(-x)}{(-x)^2 - 1} = -x - \frac{2x}{x^2 - 1} = -\left(x + \frac{2x}{x^2 - 1}\right) = -f(x), \text{ это означа-}$

ет, что f(x) – нечетная функция, и ее график симметричен относительно начала координат. Достаточно провести ее исследование для $x \ge 0$. Очевидно, что функция не является периодической. Точка О (0,0) является единственной точкой пересечения с осями координат, т.к. f(0) = 0.

4. Первая производная:
$$y' = 1 + 2 \frac{x^2 - 1 - 2x^2}{\left(x^2 - 1\right)^2} = 1 - \frac{2\left(x^2 + 1\right)}{\left(x^2 - 1\right)^2}$$
,

Критические точки найдем из условий y' = 0, $y' = \infty$.

a)
$$1 - \frac{2(x^2 + 1)}{(x^2 - 1)^2} = 0$$
, $\frac{x^4 - 4x^2 - 1}{(x^2 - 1)^2} = 0$, $x^4 - 4x^2 - 1 = 0$, $x^2 - 1 \neq 0$.

Решая биквадратное уравнение, найдем $x1, x2 \cong \pm 2,05$.

6)
$$1 - \frac{2(x^2 + 1)}{(x^2 - 1)^2} = \infty$$
, $x^4 - 4x^2 - 1 \neq 0$, $x^2 - 1 = 0$, $x^3, x^4 = \pm 1$.

Таким образом, критические точки функции: $x1 = \sqrt{4,236} \neq 2,05$, $x2 = -\sqrt{4,326} \approx -2,05$, а точки $x3,x4 = \pm 1$ не входят в область определения, следовательно, не являются критическими точками. Проверим критические точки на экстремум по первому признаку.

$$y' = \frac{x^4 - 4x^2 - 1}{(x^2 - 1)^2} < 0$$
, при $0 < x < 2.05$, $y' = \frac{x^4 - 4x^2 - 1}{(x^2 - 1)^2} > 0$, при $x > 2.05$

Так как производная меняет знак при переходе через критическую точку, то в точке x = 2,05 функция имеет минимум. Составим таблицу.

X	0	(0, 1)	1	(1; 2.05)	2,05	$(2,05,\infty)$
f(x)	0	\downarrow	не сущ.	\downarrow	(min) 3,4	↑
f'(x)	0	_	не сущ.	_	0	+

5. Найдем
$$y'' = \left(1 - 2\frac{x^2 + 1}{(x^2 - 1)^2}\right)' = \frac{4x(x^2 + 3)}{(x^2 + 3)^3}$$
. Критические точки

второго рода найдем из условия y''=0, $4x(x^2+3)=0$, x1=0; при $(x^2-1)^3=0$,откуда $x=\pm 1$. Так как $x=\pm 1$ не входят в область определения функции, то x=0 единственная критическая точка. Проверим знак второй производной при переходе через точку x=0 y''>0 при x<0,

$$y'' < 0$$
 при $x > 0$. y'' меняет знак с "+" на "-", значит, $x = 0$ - точка

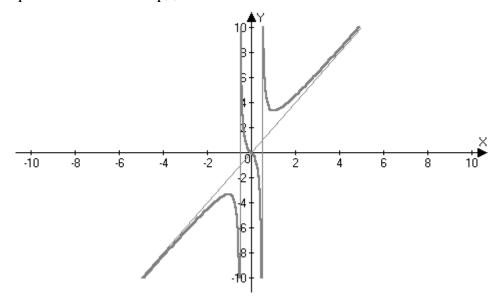
перегиба, и график меняет вогнутость на выпуклость при переходе через критическую точку. Итак, в (0, 1) функция выпукла, а в $(1, \infty)$ — вогнута.

6. Найдем асимптоты. Наклонные асимптоты имеют вид: y = kx + b;

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{1}{x} \cdot \left(x + \frac{2x}{x^2 - 1} \right) = \lim_{x \to \pm \infty} \left(1 + \frac{2}{x^2 - 1} \right) = 1,$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left(x + \frac{2x}{x^2 - 1} - x \right) = \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1} = 0, b = 0,$$

отсюда уравнение наклонной асимптоты y = x. Горизонтальные асимптоты отсутствуют, а вертикальные были найдены в п. 2. По результатам исследования построим график. Так как функция нечетная, то можно построить график для x > 0 и отобразить его симметрично начала координат.



5. Варианты контрольных заданий для контрольной работы № 2

Введение в анализ

Найти указанные пределы, не пользуясь правилом Лопиталя:

1.1. a)
$$\lim_{x \to \infty} \frac{x^2 - 7x + 1}{x^3 + 2x^2 + 9x - 4}$$
; 6) $\lim_{x \to 2} \frac{\sqrt{x^2 - 3} - 1}{x - 2}$; B) $\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x^2 + x - 2}$;

$$\Gamma) \lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{x \sin^2 x}; \quad \text{д}) \lim_{x \to \infty} \left(\frac{x+3}{x+1}\right)^{\frac{x^2+2}{x}};$$

1.2. a)
$$\lim_{x \to \infty} \frac{2x^5 + 25}{3x^3 + 2x^2 - 1}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 - x} - \sqrt{1 - x^2}}{x}$; B) $\lim_{x \to -1} \frac{x^3 + 5x^2 + 4x}{x^3 + x - 2}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{1-\cos 4x + \tan^2 x}{x\sin 3x}$; д) $\lim_{x\to \infty} \left(\frac{2x+1}{2x-3}\right)^{x+1}$;

1.3. a)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 4x}}{\sqrt[3]{2x^3 + 1}}$$
; 6) $\lim_{x \to 2} \frac{x^2 - 4}{1 - \sqrt{x - 1}}$; B) $\lim_{x \to -1} \frac{10x^3 + 6x + 16}{x^3 + x^2 - 4x - 4}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{x \sin x}{1-\cos 2x}$; д) $\lim_{x\to \infty} \left(\frac{3x-1}{3x+1}\right)^{2x+3}$;

1.4. a)
$$\lim_{x \to \infty} \frac{\sqrt{x^3 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^6 + 2} + 2};$$
 6) $\lim_{x \to 5} \frac{2 - \sqrt{x - 1}}{x^2 - 25};$ B)

$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^3 + 3x^2 + 3x + 2};$$

$$\Gamma) \lim_{x \to 0} \frac{x + \lg 2x}{\sin 3x}; \qquad \qquad \text{Д)} \lim_{x \to \infty} \left(\frac{3x - 4}{3x + 1}\right)^{x - 1};$$

1.5. a)
$$\lim_{x \to \infty} \frac{8x^2 + 2x + 1}{7x^2 + 5x - 1}$$
; 6) $\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x^2 - 1}$; B) $\lim_{x \to 3} \frac{x^3 + x^2 - 9x - 9}{x^3 - 2x^2 - x - 6}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\cos x - \cos^2 x}{x^2}$; д) $\lim_{x\to \infty} \left(\frac{x+3}{x+2}\right)^{3x-1}$;

1.6. a)
$$\lim_{x \to \infty} \frac{2x^3 + x - 4}{x^2 + 3x + 1}$$
; 6) $\lim_{x \to 1} \frac{x^2 - 4x + 3}{\sqrt{x + 3} - 2}$; B) $\lim_{x \to 2} \frac{x^3 - 4x^2 + 4x}{x^3 - x^2 + 2x - 8}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\lg x - \sin x}{x^3 \cos x}$; π) $\lim_{x\to \infty} \left(\frac{2x+1}{2x-5}\right)^{4x+1}$;

1.7. a)
$$\lim_{x \to \infty} \frac{2x+3}{\sqrt{x^2+1}}$$
; 6) $\lim_{x \to 2} \frac{\sqrt{x^3+1}-3}{x^2-3x+2}$; B) $\lim_{x \to -1} \frac{x^3-3x-2}{2x^3+7x^2+8x+3}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{x-\sin 2x}{x+\sin 3x}$; д) $\lim_{x\to \infty} \left(\frac{2-x^2}{1-x^2}\right)^{3x^2+1}$;

1.8. a)
$$\lim_{x \to \infty} \frac{x^4 + 3x^2 + x - 1}{x^3 + 5x + 6}$$
; 6) $\lim_{x \to 2} \frac{\sqrt{x^2 - 3} - 1}{x^3 - 4x}$; B) $\lim_{x \to 1} \frac{3x^2 + x - 4}{1 + x^2 - 2x^3}$;

$$\Gamma) \lim_{x \to 0} \frac{\cos 8x - 1}{x \operatorname{tg} 2x}; \ \text{д}) \lim_{x \to \infty} \left(\frac{1 + x}{2 + x}\right)^{x + 3};$$

1.9. a)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^4 + 1} + x}{\sqrt[4]{x^5 - 1} - x}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{\sqrt{x + 4} - 2}$; B) $\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 3x^2 - 4x - 12}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sqrt{1-\cos 4x}}{x}$; д) $\lim_{x\to \infty} \left(\frac{x-2}{3+x}\right)^{\frac{3x^2+1}{x}}$;

1.10. a)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^3 + 1} + x}{2x + \sqrt{x^2 + 5}}$$
; 6) $\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x + 8} - 3}$; B) $\lim_{x \to 1} \frac{x^3 + x - 2}{x^3 - x^2 + 3x - 3}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\cos x - 1}{\cos 2x - 1}$; д) $\lim_{x\to \infty} \left(\frac{x^2 + 3}{6 + x^2}\right)^{\frac{x^3 - 1}{x}}$;

1.11. a)
$$\lim_{x \to \infty} \frac{x^2 - 2x + 3}{x^3 + 2x^2 - 1}$$
; 6) $\lim_{x \to 0} \frac{\sqrt[3]{x^3 + 1} - 1}{x^3}$; B)

$$\lim_{x \to -2} \frac{18 + 9x - 2x^2 - x^3}{x^3 + x^2 - 2x};$$

$$\Gamma) \lim_{x \to 0} \frac{\cos \alpha x - \cos \beta x}{x^2}; \ \alpha, \beta - \text{числа}; \quad \text{д}) \lim_{x \to \infty} \left(\frac{3x - 1}{2 + 3x}\right)^{\frac{x^2 + 2}{x}};$$

1.12. a)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^6 + 1} + x}{(3x + 1)^2}$$
; 6) $\lim_{x \to 1} \frac{\sqrt{x} - x}{x - 1}$; B) $\lim_{x \to 2} \frac{2x - 2x^2 + x^3 - 4}{9x^2 - 5x^3 + 2x}$;

$$r) \lim_{x \to 0} \frac{\cos 4x - \cos 2x}{x \sin x};$$
 д) $\lim_{x \to \infty} \left(\frac{x^2 - 1}{1 + x^2}\right)^{\frac{x^3}{x - 1}};$

1.13. a)
$$\lim_{x \to \infty} \frac{\sqrt{x^3 + 1} + x^2}{(x+1)^2}$$
; 6) $\lim_{x \to 4} \frac{\sqrt{x^2 - 7} - 3}{x^2 - 16}$; B) $\lim_{x \to -3} \frac{x + 3x^2 + x^3 + 3}{x^3 + 5x^2 + 3x - 9}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x^2 \sin x}$; д) $\lim_{x\to \infty} \left(\frac{x+3}{x-2}\right)^{\frac{x-2}{5}}$;

1.14. a)
$$\lim_{x \to \infty} \frac{x^4 + 1}{x^3 + 4x^2 - 2x + 7}$$
; 6) $\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$; B)

$$\lim_{x \to 1} \frac{x^3 + 3x^2 - 9x + 5}{3x^3 - 10x^2 + 11x - 4};$$

$$r) \lim_{x \to 0} \frac{x - \sin 6x}{x + \lg 3x};$$
 д) $\lim_{x \to \infty} \left(\frac{x^2 + 3}{x^2 - 3}\right)^{\frac{x^3 + 1}{4x}};$

1.15. a)
$$\lim_{x \to \infty} \frac{x^2 - 4}{2x^3 - 3x + 10}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$; B)

$$\lim_{x \to 3} \frac{3 - x - 6x^2 + 2x^3}{x^3 - 2x^2 - 9};$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{\operatorname{tg}^2 3x}{1-\cos 4x}$; π) $\lim_{x\to \infty} \left(\frac{2x+3}{2x-1}\right)^{\frac{5x+1}{2}}$;

1.16. a)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^3 + 2} + 1}{\sqrt{x^2 + 1} + x}$$
; 6) $\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$; B) $\lim_{x \to 1} \frac{x^4 - 1}{3x^3 - 3x^2 + 5x - 5}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{x \sin x}{1-\cos 2x}$; $\lim_{x\to 0} \frac{x \sin 2x}{\cos 2x - \cos x}$; д) $\lim_{x\to \infty} \left(\frac{1+x}{x-3}\right)^{\frac{3x-1}{4}}$;

1.17. a)
$$\lim_{x \to \infty} \frac{5x^4 + x^2 + 1}{4x^3 + 2x^2 + 3}$$
; 6) $\lim_{x \to 2} \frac{\sqrt{2 + x} - 2}{x^2 - 4}$; B) $\lim_{x \to 2} \frac{\left(x^2 - 5x + 6\right)^2}{x^3 - 3x^2 + 4}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\cos^3 x - 1}{x^2}$; д) $\lim_{x\to \infty} \left(\frac{2x+5}{2x+7}\right)^{x+3}$;

1.18. a)
$$\lim_{x \to \infty} \frac{(2x+1)^2}{\sqrt{x^4+1}}$$
; 6) $\lim_{x \to 1} \frac{x^2-1}{\sqrt{3+x^2}-2}$; B) $\lim_{x \to -1} \frac{x^3+4x^2+12x+9}{7x^3+7x^2+2x+2}$;

r)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos 2x}$$
; $\lim_{x \to 0} \frac{\sin^3 x}{x(1 - \cos 4x)}$; $\lim_{x \to 0} \frac{x \sin x}{1 - \cos 2x}$;

$$\lim_{x\to\infty}\left(\frac{x}{x+2}\right)^{\frac{5x+1}{2}};$$

1.19. a)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + 1}}{x + \sqrt{x^2 + 1}};$$
 6) $\lim_{x \to 0} \frac{x^2}{\sqrt{1 + x^2} - 1};$ B)

$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 9x + 14}{7x^3 + 14x^2 + 2x + 4};$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{x \operatorname{tg} 4x}{\cos 6x - 1}$; д) $\lim_{x\to \infty} \left(\frac{2+x}{x+3}\right)^{\frac{2x-1}{3}}$;

1.20. a)
$$\lim_{x \to \infty} \frac{x^4 + 5x^3 + x + 5}{x^3 + 2x + 6}$$
; 6) $\lim_{x \to 3} \frac{x - 3}{\sqrt{6 + x} - 3}$; B) $\lim_{x \to 2} \frac{(x - 2)(x^3 - 8)}{x^3 - 3x^2 + 4}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{1+x\sin x -\cos 2x}{\sin^2 3x}$; д) $\lim_{x\to \infty} \left(\frac{3x+1}{3x-1}\right)^{x^2}$.

Исследовать функцию y = f(x) на непрерывность, найти точки разрыва функции и определить их тип. Построить схематический график функции.

2.1. a)
$$y = \begin{cases} \cos x, & x < 0, \\ 1 - x, & 0 \le x < 2, \\ 1, & x \ge 2; \end{cases}$$
 b) $y = \frac{1}{x(x-2)}$;

2.2. a)
$$y = \begin{cases} \sin x, & x < 0, \\ x, & 0 \le x < 4, \end{cases}$$
 b) $y = \frac{x}{x^2 - 1}$; b) $y = \frac{x}{x^2 - 1}$; $2\sqrt{2}, x \ge 4$;

2.3. a)
$$y = \begin{cases} x^2, & x \le 1, \\ 2x, & 1 < x \le 2, \\ 4, & x > 2; \end{cases}$$
 6) $y = 2^{-\frac{1}{3x+2}}$; B) $y = \frac{1+x}{4-x^2}$;

2.4. a)
$$y = \begin{cases} 1+x, & x \le 0, \\ 1-x^2, & 0 < x \le 1, \\ 0, & x > 1; \end{cases}$$
 b) $y = \frac{1}{x^2 + 5x + 6}$;

2.5. a)
$$y = \begin{cases} 3x+1, & x \le 0, \\ 1-x^2, & 0 < x \le 2, \\ 2+x, & x > 2; \end{cases}$$
 b) $y = \frac{1}{9-x^2}$;

2.6. a)
$$y = \begin{cases} x, & x \le 0, \\ -x^2, & 0 < x \le 1, \end{cases}$$
 b) $y = \frac{1}{1-3x}$; b) $y = \frac{3}{2x^2 - x}$;

2.7. a)
$$y = \begin{cases} \sin x, & x \le 1, \\ x, & 0 < x < 2, \\ 0, & x \ge 2; \end{cases}$$
 b) $y = \frac{1}{x^2 - 1}$; b) $y = \frac{2 - x}{x^2 - 1}$;

2.8. a)
$$y = \begin{cases} 0, & x < 0, \\ \sqrt{x}, & 0 \le x < 4, 6 \end{cases}$$
 $y = 3 + 5^{\frac{1}{x+1}};$ B) $y = \frac{1}{x^2 - 4};$

2.9. a)
$$y = \begin{cases} \cos x, & x \le 1, \\ 0, & \pi/2 < x \le \pi, \end{cases}$$
 6) $y = 1 + 2^{\frac{1}{3x-1}};$ B) $y = \frac{1}{x^2 + 4x - 5};$

2.10. a)
$$y = \begin{cases} x-1, & x \le 1, \\ \sqrt{x}, & 1 < x \le 4, \\ 6-x, & x > 4; \end{cases}$$
 6) $y = 1 + 2^{\frac{1}{4x+1}}$; B) $y = \frac{1}{x^2 + x - 12}$;

2.11. a)
$$y = \begin{cases} \sqrt{1-x^2}, & x \le 1, \\ x-1, & 1 < x \le 2, \\ 3-x, & x > 2; \end{cases}$$
 b) $y = \frac{x-1}{x^2-9};$

2.12. a)
$$y = \begin{cases} x, x \le 0, \\ x^2, 0 < x < 2, \\ 4 - x, x \ge 2; \end{cases}$$
 b) $y = \frac{1}{2x + 4}$; b) $y = \frac{x}{9 - x^2}$;

2.13. a)
$$\begin{cases} 1/(x^2+1), x \le 0, \\ 1-x^2, & 0 < x < 1, 6) \ y = 7^{\frac{1}{3x+4}}; \quad \text{B)} \ y = \frac{2}{x(3-x)}; \\ 1-x, & x \ge 1; \end{cases}$$

2.15. a)
$$y = \begin{cases} x^2, & x \le 1, \\ x, & 1 < x \le 4, \\ 1, & x > 4; \end{cases}$$
 6) $y = 1 - 2^{\frac{1}{2 - 3x}}$ B) $y = \frac{1}{|x - 1|}$;

2.16. a)
$$y = \begin{cases} -x, x \le 0, \\ \sqrt{x}, & 0 < x \le 4, \\ (x-4)^2, & x > 4; \end{cases}$$
 b) $y = \frac{1}{3+2x-x^2};$

2.17. a)
$$y = \begin{cases} -x - 2, & x < -2, \\ -\sqrt{4 - x^2}, & -2 < x \le 2, \end{cases}$$
 6) $y = 1 + 5^{-\frac{1}{2 + x}};$ B) $y = \frac{x}{4 - x^2};$

2.18. a)
$$y = \begin{cases} \sqrt{9 - x^2}, & x \le 0, \\ 3\sin x, & 0 < x \le \pi/2, \end{cases}$$
 6) $y = 1 - 3^{\frac{1}{2 - 3x}}$; B) $y = \frac{1}{x(2x + 3)}$;

2.19. a)
$$y = \begin{cases} x^2, x \le 1, \\ x^2, 1 < x \le 2, \end{cases}$$
 6) $y = 3 + 2^{\frac{1}{x+1}};$ B) $y = \frac{1}{4x^2 - 1};$

a)
$$y =\begin{cases} -x, x \le 0, \\ x^2, & 0 < x < 1, \\ \ln x, & x \ge 1; \end{cases}$$
 B) $y = \frac{x}{1 - 4x^2};$

Производная функции и ее приложения

- 1. Найти первую производную для указанных функций.
- 2. Функция задана параметрически. Найти y'_{x}, y''_{xx} .

- 3. Найти наибольшее и наименьшее значение функции на замкнутом отрезке.
 - 4. Вычислить пределы, применив правило Лопиталя.
 - 5. Исследовать функции по полной схеме и построить графики.
- 6. Вычислить приближенно значение выражения с помощью дифференциала.

в)
$$y = \ln \sin(2x+5)$$
; г) $y = \ln \sqrt{\frac{e^{2x}(x^2+4)}{x^5}}$; д) $tg\frac{y}{x} = 5xy$;

2.
$$\begin{cases} x = \arccos t \\ y = \sqrt{(1-t^2)^3}; \end{cases}$$
 3. $f(x) = x^3 - 12x + 7, [0,3];$

5. a)
$$y = \frac{x^2 + 1}{x}$$
; 6. $\sqrt[3]{65}$.

в)
$$y = \frac{4\sin x}{\cos^2 x}$$
; г) $y = \ln \sqrt[3]{\frac{x^5 e^{6x}}{x^3 - 4x}}$; д) $x - y + \operatorname{arctg} y = 0$;

2.
$$\begin{cases} x = \operatorname{arctg} t^2 \\ y = \ln(1 + t^4) \end{cases}$$
 3. $f(x) = x^5 - \frac{5x^3}{3} + 2, [0, 2];$

4. a)
$$\lim_{x \to 0} \frac{2e^{x/2} - 2 - x}{x^2}$$
; 6) $\lim_{x \to 0} \left(\frac{3}{1 - x^3} - \frac{4}{1 - x^4}\right)$;

5. a)
$$y = \frac{1}{1+x^2}$$
; 6. $\cos 31^\circ$.

6)
$$y = \ln \sqrt[5]{\frac{(1+x)^2}{x^2 e^{7x}}}$$
;

$$\mathbf{B}) \ y = \frac{1}{\mathsf{tg}^2 2x};$$

$$\Gamma$$
) $y = \arcsin \sqrt{1-3x}$; $y \sin x = \cos(x-y)$;

$$д) y \sin x = \cos(x - y);$$

$$2. \begin{cases} x = 2\cos^3 2t \\ y = \sin^3 2t \end{cases};$$

2.
$$\begin{cases} x = 2\cos^3 2t \\ v = \sin^3 2t \end{cases}$$
; 3. $f(x) = \frac{\sqrt{3}}{2}x + \cos x, \left[0, \frac{\pi}{2}\right]$;

4. a)
$$\lim_{x \to 0} \frac{\sqrt{1+4x}-1-2x}{x^2}$$
; 6) $\lim_{x \to \infty} \left(\frac{\pi}{2} - \arctan x\right)^{1/x}$;

6)
$$\lim_{x \to \infty} \left(\frac{\pi}{2} - \arctan x \right)^{1/x}$$
;

6)
$$y = e^{1/x}$$
;

Вариант 4

$$\text{б) } y = \left(2^{\cos x} + \sin^3 x\right)^2;$$

$$\mathbf{B}) \ y = x^{-\mathsf{tg}x};$$

в)
$$y = x^{-tgx}$$
; Γ $y = \left(1 + ctg^2 3x\right)e^{-x}$; Γ $y = arctg \frac{x}{y}$;

$$\chi = \arctan \frac{y}{x} = \arctan \frac{x}{y}$$
;

2.
$$\begin{cases} x = t^5 + 2t \\ y = t^3 + 8t - 1 \end{cases}$$
;

2.
$$\begin{cases} x = t^5 + 2t \\ v = t^3 + 8t - 1 \end{cases}$$
; 3. $f(x) = 3x^4 - 16x^3 + 2, [-3,1];$

4. a)
$$\lim_{x \to 0} \frac{6\sin 2x - 12x}{7x^3}$$

5. a)
$$y = \frac{x^3 + 1}{x^2}$$
; 6. arcsin 0,54.

$$6) y = \frac{\ln x}{r}$$

1. a)
$$y = \frac{x}{\sqrt{a^2 - x^2}}$$
;

$$\mathbf{B}) \ y = e^{-\cos 5x};$$

в)
$$y = e^{-\cos 5x}$$
; $\qquad \Gamma$) $y = \ln \sqrt{\frac{e^{3x} \cdot x^5}{\left(1 + x^2\right)^3}}$; $\qquad Д$) $\left(e^x - 1\right)\left(e^y - 1\right) = 1$;

$$2. \begin{cases} x = 3\cos^2 t \\ y = 2\sin^3 t \end{cases};$$

2.
$$\begin{cases} x = 3\cos^2 t \\ y = 2\sin^3 t \end{cases}$$
 3. $f(x) = x^3 - 3x + 1, \left[\frac{1}{2}, 2\right]$;

4. a)
$$\lim_{x \to 0} \frac{3 \operatorname{tg} 2x - 6x}{2x^3}$$
; 6) $\lim_{x \to \infty} x \left(e^{\frac{1}{x}} - 1 \right)$;

6)
$$\lim_{x \to \infty} x \left(e^{1/x} - 1 \right);$$

5. a)
$$y = \frac{x}{3 - x^2}$$
; 6. lg11.

б)
$$v = x \ln x$$
:

1. a)
$$y = \frac{1}{\sqrt{x^2 + 1}} + 5\sqrt[5]{x^3 + 1}$$
; 6) $y = 2tg^3(x^2 + 1)$;

B)
$$y = (\operatorname{arctg} x)^x$$
;

в)
$$y = (\arctan x)^x$$
; $\Gamma y = (3^{\cot x} + \ln \sin x)^3$; $\pi y^2 x - e^{y/x} = 0$;

д)
$$y^2x - e^{y/x} = 0$$
;

$$2. \begin{cases} x = 3\cos t \\ y = 4\sin^2 t \end{cases}$$

2.
$$\begin{cases} x = 3\cos t \\ v = 4\sin^2 t \end{cases}$$
; 3. $f(x) = x^4 + 4x, [-2, 2];$

4. a)
$$\lim_{x \to 0} \frac{\ln(1+3x) + 3x}{x^2}$$
; 6) $\lim_{x \to a} \left(2 - \frac{x}{a}\right)^{\lg \frac{\pi x}{2a}}$;

$$6) \lim_{x \to a} \left(2 - \frac{x}{a} \right)^{\operatorname{tg} \frac{\lambda a}{2a}};$$

5. a)
$$y = \frac{1}{1 - x^2}$$
;

5. a)
$$y = \frac{1}{1 + x^2}$$
; 6. $tg46^\circ$.

1. a)
$$y = 5\sqrt{4x+3} - \frac{2}{\sqrt{x^3 + x + 1}}$$
; 6) $y = x^2 e^{\cos x}$;

$$6) y = x^2 e^{\cos x};$$

в)
$$y = \ln \sqrt{\frac{1 - \sin x}{1 + \cos x}}$$
; г) $y = \arccos(\operatorname{tg} x)$; д) $x + y + e^{xy} = 2$;

$$\Gamma) \ \ y = \arccos(\mathsf{tg} x)$$

д)
$$x + y + e^{xy} = 2$$
;

$$2. \begin{cases} x = e^{2t} \\ y = \cos t \end{cases}$$

2.
$$\begin{cases} x = e^{2t} \\ y = \cos t \end{cases}$$
; 3. $y = 3x^4 - 16x^3 + 2, [0, 4];$

4. a)
$$\lim_{x \to 0} \frac{e^{-5x} - 1 + 5x}{3x^2}$$
; 6) $\lim_{x \to \infty} (\pi - 2 \operatorname{arctg} x) \ln x$;

5. a)
$$y = \frac{2 - 4x^2}{1 - 4x^2}$$
; 6. $y = \ln(x^2 - 4x + 8)$; 6. $\sqrt[3]{26}$.

6)
$$y = \ln(x^2 - 4x + 8);$$

1. a)
$$y = \frac{x}{(x+1)^2 \cdot (x^2+1)^3}$$
; 6) $y = \sqrt[3]{(1+\sin^3 2x)^2}$;
B) $y = (1+\tan^2 x)e^{\arctan^2 x}$;

$$\Gamma) y = (\arcsin 3x)^{x^2}$$

$$\Gamma$$
) $y = (\arcsin 3x)^{x^2}$; π д) $x \ln(1+y^2) + y \ln(1+x^2) = 0$;

2.
$$\begin{cases} x = t^2 + t + 10 \\ y = t^3 + t \end{cases}$$

2.
$$\begin{cases} x = t^2 + t + 10 \\ y = t^3 + t \end{cases}$$
; 3. $y = \sin x - \frac{x}{2}, \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$;

4. a)
$$\lim_{x \to 0} \frac{\arcsin 4x - 4x}{x^3}$$
; 6) $\lim_{x \to \infty} \left(\frac{\pi}{2} \operatorname{arctg} x\right)^2$;

6)
$$\lim_{x \to \infty} \left(\frac{\pi}{2} \operatorname{arctg} x \right)^2$$
;

6)
$$y = x^2 - 2\ln x$$

$$\Gamma) \ \ y = x^{\arcsin x};$$

$$\Gamma$$
) $y = x^{\arcsin x}$; π д) $\ln y = \arctan \frac{x}{y}$;

$$2. \begin{cases} x = t^2 + 1 \\ y = e^{t^3} \end{cases};$$

2.
$$\begin{cases} x = t^2 + 1 \\ y = e^{t^3} \end{cases}$$
; 3. $y = x^5 - \frac{5x^3}{3} + 7, [-2, 1];$

4. a)
$$\lim_{x \to 0} \frac{2\sin 3x - 6x}{5x^3}$$
; 6) $\lim_{x \to 0} \left(x + e^{2x}\right)^{1/x}$;

6)
$$y = \frac{e^x}{e^x - 1}$$

6.
$$\sqrt[4]{15,8}$$

6)
$$y = tg^2(x^3 + 1);$$

$$y = \arctan 3\sqrt{\frac{1-x}{1+x}};$$

$$\Gamma) y = (1 + \sin 2x)^{\cos 2x};$$

$$\Gamma$$
) $y = (1 + \sin 2x)^{\cos 2x}$; $\chi^2 y^2 + \arccos(2x + y) = 0$;

2.
$$\begin{cases} x = \arctan \sqrt{t^3} \\ y = \ln \left(1 + t^3\right)^3; \end{cases}$$

3.
$$y = \frac{8-x}{\sqrt{x^2+4}}, [-8,0];$$

4. a)
$$\lim_{x \to 0} \frac{2\ln\left(1 + \frac{x}{2}\right) - x}{x^2}$$
; 6) $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x}$;

$$\text{б) } \lim_{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x}$$

6)
$$y = x^2 e^{-x}$$
;

6.
$$(0.95)^5$$

Вариант 11

1. a)
$$y = \frac{x+1}{\sqrt{2-2x-x^2}}$$
;

1. a)
$$y = \frac{x+1}{\sqrt{2-2x-x^2}}$$
; 6) $y = \ln \frac{\sqrt{1+x}}{x^3 e^{5x}}$; B) $y = \sin \ln (x^2 + 4)$;

$$\Gamma$$
) $y = (tgx)^{x^2}$; $Д$) $e^x + e^y = e^{xy}$;

д)
$$e^{x} + e^{y} = e^{xy}$$
;

2.
$$\begin{cases} x = e^{t^2 - 2t} \\ y = t^2 - 2t \end{cases}$$

2.
$$\begin{cases} x = e^{t^2 - 2t} \\ y = t^2 - 2t \end{cases}$$
; 3. $y = \frac{x+3}{x^2 + 7}, [-10, -3];$

$$6) \lim_{x \to \infty} \left(x + e^x \right)^{1/x};$$

5. a)
$$y = 3\sqrt[3]{x^2} + 2x$$
;

6)
$$y = 2x - \arcsin x$$
; 6. $\sin 61^{\circ}$.

$$6. \sin 61^{\circ}$$
.

1. a)
$$y = \sqrt{x} \cdot e^{\sqrt{x+1}}$$

$$6) y = \cos^2(\sin x)$$

$$\Gamma$$
) $y\cos x = \sin(y-x)$; $y = (\cot x + \tan x)^3$;

д)
$$y = (\operatorname{ctg} x + \operatorname{tg} x)^3$$
;

$$2. \begin{cases} x = 2\sin 2t \\ y = \cos^3 t \end{cases}$$

2.
$$\begin{cases} x = 2\sin 2t \\ y = \cos^3 t \end{cases}$$
; 3. $y = x^4 - 2x^2 + 5$, $[-1, 2]$;

$$6) \lim_{x \to 0} \left(\frac{1}{x}\right)^{\text{tg}x};$$

5. a)
$$y = 3\sqrt[3]{x^2} + 2x$$
; 6. $\sqrt{82}$.

$$6) \ \ y = \frac{x^3 + 1}{x^2};$$

6.
$$\sqrt{82}$$

$$5) y = x^3 e^{\operatorname{tg} x}; \qquad \text{B}$$

$$y = (\ln x + \sin \ln x)^2;$$

$$\Gamma$$
) $y = (\arccos x)^{1/x}$; χ д) $\chi = \ln(x + y)$;

д)
$$yx = \ln(x+y)$$
;

$$2. \begin{cases} x = \ln \sin t \\ y = \operatorname{tg} t \end{cases}$$

2.
$$\begin{cases} x = \ln \sin t \\ y = tgt \end{cases}$$
; 3. $y = x + 2\sqrt{x}$, [0,4];

$$6) \lim_{x \to 0} x^{\sin x}$$

5. a)
$$y = \frac{2x-1}{(x-1)^2}$$
;

6)
$$y = x^3 e^{-x}$$
; 6. $e^{1,03}$.

6.
$$e^{1,03}$$

Вариант 14

1. a)
$$y = \frac{1}{\sqrt{x^2 - 1}} + 4\sqrt{x^2 + 1}$$
; 6) $y = e^{\sin^2 x} \cos x$;

$$5) y = e^{\sin^2 x} \cos x; \qquad B$$

$$y = \operatorname{tg}(x^2 + \sin x);$$

$$\Gamma) y = (\sin x)^{\ln x};$$

$$д) 2^{x} + 2^{y} = 2^{x+y};$$

$$2. \begin{cases} x = tg^2 t \\ y = \ln \sin t \end{cases}$$

2.
$$\begin{cases} x = \lg^2 t \\ y = \ln \sin t \end{cases}$$
 3. $y = x^3 - 3x^2 + 6x - 2$, $[-1, 2]$;

4. a)
$$\lim_{x\to 0} \frac{x - \arctan x}{x^2}$$
; 6) $\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right)$;

6)
$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right)$$
;

5. a)
$$y = \ln(x^2 - 2x + 2)$$

1. a)
$$y = \frac{\sqrt{4 - 4x + x^2}}{x^2 - 4}$$
; 6) $y = (\sin x + 1) \operatorname{tg} 2x$; B) $y = (3^{\sin x} - \cos^2 x)^2$;

$$\Gamma$$
) $y = (tgx)^{x^2}$; D $\frac{x}{y} = tg\frac{y}{x}$;

$$\chi$$
) $\frac{x}{y} = tg \frac{y}{x}$

2.
$$\begin{cases} x = t^2 + 2t \\ y = t^3 + 3t^2 \end{cases}$$

2.
$$\begin{cases} x = t^2 + 2t \\ y = t^3 + 3t^2 \end{cases}$$
; 3. $y = \frac{x-1}{x+1}$, [0,4];

4. a)
$$\lim_{x \to 0} \frac{\ln \sin 2x}{\ln \sin x}$$

5. a)
$$y = x^3 e^{-x}$$
; 6. $(1,03)^{12}$.

6)
$$y = \frac{x^2}{3 - x^2}$$

1. a)
$$y = \frac{\sqrt{x}}{x + \sqrt{x}}$$

$$y = tg^2 (1 + \cos x);$$

$$\Gamma$$
) $y = x^{\arctan y}$

$$\Gamma$$
) $y = x^{\arctan y}$; д) $\ln y = \arcsin \frac{y}{x}$;

2.
$$\begin{cases} x = t^3 - 1 \\ y = t^3 + t^2 \end{cases}$$
;

2.
$$\begin{cases} x = t^3 - 1 \\ v = t^3 + t^2 \end{cases}$$
; 3. $y = 3x - x^3$, $[-2,3]$;

4. a)
$$\lim_{x \to 0} \frac{e^{2x} - \cos 2x}{e^{3x} - \cos 3x}$$
; 6) $\lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x$;

$$6) \lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x;$$

$$6) y = x - \ln(x - 1)$$

6.
$$4^{2,02}$$
.

1. a)
$$y = \sqrt{x} \cdot \ln(x + \sqrt{x+1})$$
; 6) $y = \frac{e^{x^2}}{\sqrt{x^2 - x}}$; B) $y = \text{ctg}^3(\sin x)$;

$$6) \ \ y = \frac{e^{x^2}}{\sqrt{x^2 - x}};$$

$$y = \operatorname{ctg}^3(\sin x)$$

$$\Gamma) y = (\ln x)^{\operatorname{tg} x};$$

$$\Gamma$$
) $y = (\ln x)^{\operatorname{tg}x}$; χ д) $y = \operatorname{arctg}(x + y)$;

$$2. \begin{cases} x = \ln(t^2 - 1); \\ y = t - 1 \end{cases}$$

2.
$$\begin{cases} x = \ln(t^2 - 1); \\ y = t - 1 \end{cases}$$
; 3. $y = \frac{x - 2}{x^2 + 5}$, [-2,3];

4. a)
$$\lim_{x\to 0} \frac{x-\sin x}{x-\tan x}$$

4. a)
$$\lim_{x\to 0} \frac{x-\sin x}{x-tgx}$$
; 6) $\lim_{x\to 0} (\operatorname{ctg} x)^{\sin x}$;

$$6) y = x^3 e^x;$$

1. a)
$$y = 3\sqrt{x^2 + 4} - \frac{2}{\sqrt{x+1}}$$
; 6) $y = x^3 e^{tgx}$; B) $y = \ln(\ln x + x^2)$;

$$6) y = x^3 e^{\operatorname{tg} x};$$

$$\mathbf{B}) \ y = \ln\left(\ln x + x^2\right);$$

$$r$$
) $y = \ln \frac{x^3 \cos^2 x}{\sqrt{1 - x^4}}$; $y = \ln \frac{x^3 \cos^2 x}{\sqrt{1 - x^4}}$; $y = 2$;

$$д) x + y + 2^{xy} = 2$$

$$2. \begin{cases} x = e^{t^2} \\ y = t^2 + 1 \end{cases};$$

2.
$$\begin{cases} x = e^{t^2} \\ y = t^2 + 1 \end{cases}$$
; 3. $y = x + \frac{1}{x}$, $[-10, -0, 1]$;

4. a)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 - \sqrt{2x - x^2}}$$
; 6) $\lim_{x \to \infty} \left[x \sin \frac{a}{x} \right]$;

$$\text{6) } \lim_{x \to \infty} \left[x \sin \frac{a}{x} \right];$$

$$\text{б) } y = e^{\frac{1}{x+2}}$$

$$5) y = x^2 \operatorname{arctg} x^2;$$

$$y = \arcsin^2 e^{2x};$$

$$\Gamma$$
) $y = (\cos x)^{1/x+1}$; χ д) $\chi^2 = e^y x + x^2$;

$$д) y^2 = e^y x + x^2;$$

$$2. \begin{cases} x = \sin t \\ y = \operatorname{ctg}^2 t \end{cases};$$

3.
$$y = 81x - x^4$$
, $[-1,4]$;

4. a)
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{3}{x^3 - 1} \right)$$
; 6) $\lim_{x \to \frac{\pi}{4}} (tgx)^{tg2x}$;

$$6) \lim_{x \to \frac{\pi}{4}} (tgx)^{tg2x};$$

5. a)
$$y = \frac{x^3 - 1}{4x^2}$$
; 6. $\sqrt{63.4}$.

6)
$$y = \ln \frac{x+1}{x+2}$$

6.
$$\sqrt{63,4}$$

1. a)
$$y = \cos x \sqrt{1 + \sin^2 x}$$
;

$$\Gamma$$
) $y = (tgx)^{\ln x}$; д) $y = 1 + xe^y$;

$$2. \begin{cases} x = \ln t \\ y = t^2 - 1 \end{cases};$$

2.
$$\begin{cases} x = \ln t \\ y = t^2 - 1 \end{cases}$$
; 3. a) $y = \frac{x^3}{x - 1}$; 6) $y = e^{\frac{1}{x - 3}}$

$$6) y = e^{\frac{1}{x-3}}$$

4. a)
$$\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right)$$
; 6) $\lim_{x\to 0} \frac{\ln \sin 2x}{\ln \sin x}$;

6)
$$\lim_{x \to 0} \frac{\ln \sin 2x}{\ln \sin x}$$
;

5. a)
$$y = \frac{4x}{4+x^2}$$
; 6. $y = \frac{\ln x}{\sqrt{x}}$; 6. $\sqrt[3]{8,2}$.

$$6) y = \frac{\ln x}{\sqrt{x}};$$

6.
$$\sqrt[3]{8,2}$$
.